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Abstract

Useful and/or little-known theorems involving proper orthogonal matrices
are reviewed. Orthogonal matrices appear in the transformation of tensor compo-
nents from one orthogonal basis to another. The distinction between an orthogonal
direction cosine matrix and a rotation operation is discussed. Among the theorems
and techniques presented are (1) various ways to characterize a rotation including
proper orthogonal tensors, dyadics, Euler angles, axis/angle representations, series
expansions, and quaternions; (2) the Euler-Rodrigues formula for converting axis
and angle to a rotation tensor; (3) the distinction between rotations and reflections,
along with implications for “handedness” of coordinate systems; (4) non-commu-
tivity of sequential rotations, (5) eigenvalues and eigenvectors of a rotation; (6)
the polar decomposition theorem for expressing a general deformation as a se-
quence of shape and volume changes in combination with pure rotations; (7) mix-
ing rotations in Eulerian hydrocodes or interpolating rotations in discrete field
approximations; (8) Rates of rotation and the difference between spin and vortici-
ty, (9) Random rotations for simulating crystal distributions; (10) The principle of
material frame indifference (PMFI); and (11) a tensor-analysis presentation of
classical rigid body mechanics, including direct notation expressions for momen-
tum and energy and the extremely compact direct notation formulation of Euler’s
equations (i.e., Newton’s law for rigid bodies). Computer source code is provided
for several rotation-related algorithms.

A draft version of this document is available at
http://www.me.unm.edu/~rmbrann/gobag.html
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ROTATION
Rebecca Brannon

Adjunct Professor, University of New Mexico
and Senior Staff, Sandia National Laboratories

Introduction

This rotation tutorial is written for engineers, not mathematicians or phys-
icists. Hence, all discussions are limited to ordinary 3-dimensional vectors of
the type discussed in first calculus courses, and no proofs are provided except
where the proof itself clarifies a concept.

This document is an informal overview of fundamental theorems and con-
cepts involving rotation. Physically, a rotation is a reorientation of a body
without changing the body’s size or shape. Then the distance between any two
particular points in the body remain unchanged after the rotation. As will be
soon seen, a rotation may be described mathematically by a special kind of
orthogonal tensor. By using the “special kind” proviso, we are implying that
rotation tensors are always orthogonal, but orthogonal tensors are not neces-
sarily rotations. A matrix  is orthogonal if and only if

,  (0.1)

where  is the identity matrix. In indicial form,

 (0.2)

where is the Kronecker delta,* and (as explained in the Appendix B)
repeated indices are to be summed from 1 to 3. The matrix corresponds to
a rotation if its determinant is equal to .

The topics in this tutorial are arranged as follows:

• Section 1 reviews how orthogonal direction cosine matrices are used to
transform vector and tensor components from on orthonormal basis to
another.

• Section 2 points out the distinction between rotation and coordinate
transformation. The main idea is that rotation is a matter of perspective.
You can rotate the object you are looking at, while you stay still, or you can
keep the object fixed while you rotate yourself. It’s important to be aware
of which of these perspectives applies for your problem of interest.

• Section 3 describes how to convert an axis and angle of rotation into a

* i.e., components of the 3×3 identity matrix. Thus  equals 1 if  and 0 if .

Q[ ]

Q[ ] T Q[ ] I[ ]=

I[ ]

QkiQkj δij=

δij

δij i= j i j≠

Q[ ]
+1
1
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rotation tensor.
• Section 4 reiterates that a rotation is characterized by a proper orthogonal

tensor — i.e., one having a determinate equal to +1. This section also
explains that an orthogonal tensor with a determinate equal to should
be regarded (in general) as a rotation in combination with a reflection.

• Section 5 presents the representation of a rotation in terms of a unit
quaternion. Quaternions are rather old fashioned predecessors to modern
vectors. The quaternion needed to describe rotation may be regarded as a
point on a four-dimensional sphere.

• Section 6 describes how any linear operator can be expressed as a sum of
three dyads, and this result is specialized to rotations.

• Section 7 shows that rotations may be expressed as a (non-commuting)
sequence of three rotation operations. When defining a rotation in this
way, it is essential to know whether subsequent rotations are defined
about fixed axes or follower axes. The first view shows the structure of the
rotation matrix for sequential rotations applied about the fixed
laboratory basis. The next view (Euler angles) shows the rotation that
results when the sequential rotations are applied about a triad that moves
with the body.

• Section 8 provides the series expansion representation of a rotation.
• Section 9 derives the eigenvalues and eigenvectors of any rotation

tensor.
• Section 10 presents the polar decomposition theorem.
• Section 11 discusses possible solutions to the problem of “mixing”

rotations in Eulerian physics codes or in Lagrangian codes that remap the
mesh.

• Section 12 shows how the rate of a rotation tensor is related to the more
conventional angular rotation vector.

• Section 13 shows how to generate a uniformly random rotation tensor,
which is useful for generating grain orientations for microscale
simulations. We also discuss how to find the average of a tensor over all
possible (uniform) rotations of that tensor.

• Section 15 provides an elementary introduction to the principle of
material frame indifference, which requires that material constitutive
models must be invariant under rigid rotation.

• Section 16 specializes the laws mechanics as applied to rigid body
mechanics. By applying the full power of tensor analysis, this
presentation distinguishes itself from the derivations normally found in
elementary dynamics textbooks. For example, with direct-notation tensor
analysis, Euler’s equations can be presented in a single line.

• Appendix A provides FORTRAN subroutines that perform most of the
computations presented in this report.

1–
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This report presumes that the reader has elementary knowl-
edge of vector and tensor analysis. The notation conventions used
in this report are summarized in Appendix B.
3
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1. Orthogonal basis & coordinate transformations

A rigid body is an idealized collection of points (continuous or discrete) for
which the distance between any two points is fixed. Consequently the angle
between any two material line segments is also fixed. A rigid body is capable
of only uniform translation and rotation. A rotation is simply a reorientation
of a body without distortion (i.e., without bending or stretching). This section
focuses strictly on rotation, not translation.*

Let {X,Y,Z} be a fixed “laboratory” orthogonal coordinate triad, and let
be an orthogonal “embedded” triad that moves with the rigid body.

The two triads are taken to be initially coincident. The rotation may be
described mathematically by the angles that the embedded triad makes with
the fixed laboratory triad.

Motivational discussion: Principal basis. Most engineering students even-
tually learn that any symmetric matrix  can be decomposed as

,  (1.1)

where is a diagonal matrix containing the eigenvalues of , and is
an orthogonal matrix whose columns consist of the corresponding eigenvectors
of . This theorem from matrix analysis has an interpretation in tensor
analysis as a change-of-basis operation. As we will soon see, the above matrix
decomposition tells us the following:

* To include translation, the laboratory triad is merely reinterpreted as a triad that translates with a
particular (convenient) point in the body, but does not change orientation.

x y z, ,{ }

Z

X

Y

z

x

y

Z

X

Y

z

x

y

θyX

θxX

θxZ

θzZ

θzY

θyY

Figure 1.1. A rigid rotation. The rotation of a body may be described by the rotation
of an embedded triad that moves with the body. Rotation may be described by the an-
gles that the embedded triad axes make with the originally coincident laboratory axes.
This figure shows six of the nine possible angles.

BEFORE ROTATION AFTER ROTATION

A[ ]

A[ ] Q[ ] T D[ ] Q[ ]=

D[ ] A[ ] Q[ ]

A[ ]
4
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If and ,

then  (1.2)

where are the eigenvalues and are the orthonormal eigenvectors.
Stated differently, if a tensor has components with respect to the labo-
ratory  basis, then it has components

 (1.3)

with respect to the principal basis. This result motivates the gen-
eral study of changes of basis. For example, if are the components of a ten-
sor with respect to the laboratory basis, then what are the
components  with respect to some different ?

Orthonormal basis transformations. In Fig. 1.1, the angle that the embed-
ded -axis makes with the fixed X-axis is denoted , and the angle that the
embedded -axis makes with the fixed Z-axis is denoted , and so on. There
are nine such angles, but only three are independent, as discussed below. The
orientation of the rotated coordinate system can be described through the use
of a coordinate transformation matrix  defined

 (1.4)

The components of are called direction cosines. Even though we have
phrased these components in terms of cosines of the angles between fixed and
rotated axes, it’s conceptually easier to recognize that the row of con-
tains the components of the base vector of the rotated coordinate system
expressed in terms of the fixed system. We will later espouse representing the
rotated orientation by using a alternative direction cosine matrix equal to
the transpose of . Hence, the column of contains the components of
the  rotated base vector. Examples will be provided soon.

A
˜̃

AijE˜ iE˜ j
j 1=

3

∑
i 1=

3

∑= Aij A ji=

A
˜̃

λK p
˜ K

p
˜ K

K 1=

3

∑=

λK p
˜ K

A
˜̃

Aij
E
˜ 1 E

˜ 2 E
˜ 3, ,{ }

λ1 0 0

0 λ2 0

0 0 λ3

p
˜ 1 p

˜ 2 p
˜ 3, ,{ }

Aij
E
˜ 1 E

˜ 2 E
˜ 3, ,{ }

Ãij e
˜ 1 e

˜ 2 e
˜ 3, ,{ }

x θxX
x θxZ

L[ ]

L[ ]
θxXcos θxYcos θxZcos

θyXcos θyYcos θyZcos

θzXcos θzYcos θzZcos

=

L[ ]

ith L[ ]
ith

Q[ ]
L[ ] ith Q[ ]

ith
5
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Let be the orthonormal set of “laboratory” base vectors asso-
ciated with the {X,Y,Z} system. Let be the orthonormal set of “lab-
oratory” base vectors associated with the system. For any two
vectors,  and , the vector inner product (single dot) can be defined

,  (1.5)

where and are the magnitudes of the vectors, and , and is the
angle between. Therefore, recognizing that the base vectors have unit magni-
tude, the direction cosine matrix may be written

 (1.6)

Instead of using the symbols as subscripts, it is common practice to
instead identify the coordinates by number . With this convention, the
above equation becomes

 (1.7)

which can be written very compactly as

,  (1.8)

The subscripts (called indices) vary from 1 to 3.

It will soon be shown that the matrix is orthogonal,* which means the
inverse of  is just the transpose of . That is,

 (1.9)

Here, denotes the identity matrix. The above matrix equation is written in
indicial form as

 (1.10)

where  is the Kronecker delta (equal to 1 if  and 0 if ).

* This property holds only when both bases are orthonormal. An orthonormal basis is right-handed if
crossing the first base vector into the second base vector gives the third base vector. Otherwise, if
the third base vector points the opposite way, then the basis is left-handed. The determinate of
will be +1 if both bases have the same handedness, or –1 if the bases have different handedness.

E
˜ X E

˜ Y E
˜ Z, ,{ }

e
˜ x e

˜ y e
˜ z, ,{ }

x y z, ,{ }
u
˜

v
˜

u
˜

v
˜

• u
˜

v
˜

θuvcos=

u
˜

v
˜

u
˜

v
˜

θuv

L[ ]
e
˜ x E

˜ X• e
˜ x E

˜ Y• e
˜ x E

˜ Z•

e
˜ y E

˜ X• e
˜ y E

˜ Y• e
˜ y E

˜ Z•

e
˜ z E

˜ X• e
˜ z E

˜ Y• e
˜ z E

˜ Z•

=

x y z, ,{ }
1 2 3, ,{ }

L[ ]

e
˜ 1 E

˜ 1• e
˜ 1 E

˜ 2• e
˜ 1 E

˜ 3•

e
˜ 2 E

˜ 1• e
˜ 2 E

˜ 2• e
˜ 2 E

˜ 3•

e
˜ 3 E

˜ 1• e
˜ 3 E

˜ 2• e
˜ 3 E

˜ 3•

=

Lij e
˜ i E

˜ j•=

L[ ]

L[ ]

L[ ] L[ ]

L[ ] L[ ] T L[ ] T L[ ] I[ ]= =

I[ ]

LikL jk
k 1=

3

∑ LkiLkj
k 1=

3

∑ δij= =

δij i= j i j≠
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Because the laboratory basis is a basis, we know that there
exist coefficients such that any vector can be written as a linear combi-
nation of the lab base vectors. Let’s denote the component of with
respect to the laboratory basis by . This component may be computed by
dotting the vector into the base vector . Stated mathematically, there
exist vector “components”  such that

, where  (1.11)

Equation (1.11) is true for any vector . As a special instance, we may con-
sider the vector to be one of the rotated base vectors . Then we know that
each can be expressed as a linear combination of the lab base vectors. Let’s
denote the component of with respect to the laboratory base vector by

. Then Eq. (1.11) states that each rotated base vector can be expressed
in the form

, where  (1.12)

To remember this equation, note that the first index on is the same as the
index on the rotated basis , and the second index on matches the index
on the laboratory basis . Summation occurs over the repeated index j.

The rotated vectors form a basis too. Consequently, we know
that there exist coefficients  such that any vector  can be written

, where  (1.13)

As a special case, we may assert the existence of coefficients such that
each laboratory base vector can be written as a linear combination of the
rotated basis:

, where  (1.14)

For any vectors, and , we know that the dot product is commutative (i.e.,
). Consequently, . Here, the final

step came from applying the definition of in Eq. (1.12)2. In matrix nota-
tion, this says that

.  (1.15)

E
˜ 1 E

˜ 2 E
˜ 3, ,{ }

v j v
˜ jth v

˜v j
v
˜

jth E
˜ j

v j

v
˜

v jE˜ j
j 1=

3

∑= v j v
˜

E
˜ j•=

v
˜v

˜
e
˜ i

e
˜ i

e
˜ i jth

Lij e
˜ i

e
˜ i LijE˜ j

j 1=

3

∑= Lij e
˜ i E

˜ j•=

Lij
e
˜ i Lij

E
˜ j

e
˜ 1 e

˜ 2 e
˜ 3, ,{ }

ṽ j v
˜

v
˜

ṽ je˜ j
j 1=

3

∑= ṽ j v
˜

e
˜ j•=

λ ij
E
˜ i

E
˜ i λ ije˜ j

j 1=

3

∑= λ ij E
˜ i e

˜ j•=

v
˜

w
˜v

˜
w
˜

• w
˜

v
˜

•= λ ij E
˜ i e

˜ j• e
˜ j E

˜ i• L ji= = =
Lij

λ[ ] L[ ] T=
7
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Now that we know that , we see in hindsight that it’s not really
necessary to introduce a new set of coefficients ; the matrix contains all
of the information needed to express one basis with respect to the other. In
terms of the  coefficients, Eq. (1.14) becomes

, where  (1.16)

As before, the first index on is identical to the index on the rotated basis
, and the second index on matches the index on the laboratory basis .

Summation occurs over the repeated index j.

The coordinate transformation matrix is often used for relating the
components of vectors with respect to different bases. Suppose are
the components of a vector with respect to the fixed laboratory basis.
Then  can be written

, where  (1.17)

The same vector can alternatively be written as a linear combination of the
rotated base vectors. If are the components of the same vector

 with respect to the rotated  coordinate system, then

, where  (1.18)

Equations (1.17) and (1.18) must both represent the same vector. We can sub-
stitute Eq. (1.17)1 into (1.18)2 to obtain

 (1.19)

In the last step, we have used the property that for any vectors
and and therefore . Observing that ,

Eq. (1.19) may be written

.  In matrix form,  (1.20)

A similar procedure of substituting Eq. (1.18)1 into (1.17)2 gives

 (1.21)

Recognizing that , this may be written

λ ij L ji=
λ ij L[ ]

L[ ]

E
˜ i L jie˜ j

j 1=

3

∑= L ji e
˜ j E

˜ i•=

L ji
e
˜ j L ji E

˜ i

L[ ]
v1 v2 v3, ,{ }

v
˜

E
˜ i

v
˜

v
˜

viE˜ i
i 1=

3

∑= vi v
˜

E
˜ i•=

v
˜e

˜ j ṽ1 ṽ2 ṽ3, ,{ }
v
˜

e
˜ j

v
˜

ṽ je˜ j
j 1=

3

∑= ṽ j v
˜

e
˜ j•=

ṽ j v
˜

e
˜ j• viE˜ i

i 1=

3

∑ e
˜ j• vie˜ j E

˜ i•
i 1=

3

∑= = =

a
˜

b
˜

• b
˜

a
˜

•=
a
˜

b
˜

E
˜ i e

˜ j• e
˜ j E

˜ i•= e
˜ j E

˜ i• L ji=

ṽ j L jivi
i 1=

3

∑= ṽ{ } L[ ] v{ }=

vi v
˜

E
˜ i• ṽ je˜ j

j 1=

3

∑ E
˜ i•= =

e
˜ j E

˜ i• L ji=
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.  In matrix form,  (1.22)

Not only are Eqs. (1.20) and (1.22) important results in their own right, they
also demonstrate that the matrix must be orthogonal because both matrix
equations can be true only if

 (1.23)

All vector coordinate transformations are in the form of either Eq. (1.20) or
(1.22). It can be difficult to remember which equation to use unless you use the
following mnemonic observation: Note from Eq. (1.8) that the first subscript
on corresponds to the rotated basis, and the second subscript corresponds
to the laboratory basis. The same rule applies in the vector coordinate trans-
formations of Eqs. (1.20) and (1.22). The first subscript on always matches
the subscript on the rotated components and the second subscript on
always matches the subscript on the lab components, regardless of where
these components appear in the transformation equation. The summation
always occurs over the repeated index. This mnemonic rule also applies to
coordinate transformations for tensors. Let denote a second-order tensor.*

Let denote the components with respect to the laboratory basis. Let
denote the components with respect to the rotated basis. There are two sub-
scripts on the components, so the matrix will appear twice. The mnemonic
rule says that the subscripts on the rotated components must match the first
subscripts on the L’s, and the subscripts on the laboratory components must
match the second subscripts on the L’s. Finally, any subscripts that appear
twice in a single term must be summed. Thus, the coordinate transformation
rules for tensors are

, or in matrix form,  (1.24)

and

, or in matrix form,  (1.25)

Note that is easier to first write the component form, and then construct the
corresponding matrix form. Doing it that way relieves you from having to
recall where the transpose goes.

* We emphasize the tensorial order of a quantity by the number of underlines. For example,  is a
scalar,  is a vector,  is a second-order tensor, etc.

vi L jiṽ j
j 1=

3

∑= v{ } L[ ] T ṽ{ }=

L[ ]

L[ ] 1– L[ ] T=

Lij

L[ ]
ṽ{ } L[ ]

v{ }

T
˜̃

s
v
˜

T
˜̃

Tij T̃kl

L[ ]

T̃kl LkiLljTij
j 1=

3

∑
i 1=

3

∑= T̃[ ] L[ ] T[ ] L[ ] T=

Tij LkiLljTkl
l 1=

3

∑
k 1=

3

∑= T[ ] L[ ] T T̃[ ] L[ ]=
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Alternative direction cosine matrix. There is no divine law that says the
direction cosines must be arranged in matrix form as was done in Eq. (1.8).
Quite often, they are arranged in the transpose of the configuration used for

. In other words, many people define an alternative direction cosine
matrix:

,  (1.26)

This is a perfectly legitimate alternative, and a mnemonic rule still holds
except, with this approach, the first subscript on corresponds to the labo-
ratory components, and the second subscript corresponds to the rotated com-
ponents. With this direction cosine definition, the key results of this section
may be written

 (1.27)

 (1.28)

 (1.29)

.  In matrix form,  (1.30)

.  In matrix form,  (1.31)

, or in matrix form,  (1.32)

, or in matrix form,  (1.33)

Coordinate transformations. The laboratory coordinates of a point in space
are denoted or, using the numbered notation, . The
coordinates of that same point with respect to the rotated system are denoted

or . Because both coordinate systems are Cartesian, these
position coordinates are identically equal to the position components. Thus,
the above vector transformation relation also serve as coordinate transforma-

L[ ]

Qij E
˜ i e

˜ j•=

Qij

Q[ ] 1– Q[ ] T=

e
˜ i Q jiE˜ j

j 1=

3

∑=

E
˜ i Qije˜ j

j 1=

3

∑=

ṽ j Qijvi
i 1=

3

∑= ṽ{ } Q[ ] T v{ }=

vi Qijṽ j
j 1=

3

∑= v{ } Q[ ] ṽ{ }=

T̃kl QikQ jlTij
j 1=

3

∑
i 1=

3

∑= T̃[ ] Q[ ] T T[ ] Q[ ]=

Tij QikQ jlT̃kl

l 1=

3

∑
k 1=

3

∑= T[ ] Q[ ] T̃[ ] Q[ ] T=

X Y Z, ,{ } X 1 X 2 X 3, ,{ }

x y z, ,{ } x1 x2 x3, ,{ }
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tion relations. Specifically, replacing the lab components by the
lab coordinates , and replacing the rotated components

by the rotated components , Eqs. (1.30) and (1.31) give
us the coordinate transformation rules:

.  In matrix form,  (1.34)

.  In matrix form,  (1.35)

v1 v2 v3, ,{ }
X 1 X 2 X 3, ,{ }

ṽ1 ṽ2 ṽ3, ,{ } x1 x2 x3, ,{ }

x j Qij Xi
i 1=

3

∑= x{ } Q[ ] T X{ }=

Xi Qijx j
j 1=

3

∑= X{ } Q[ ] x{ }=
11
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2. Rotation operations

We now introduce a subtle but important distinction between coordinate
transformations and rotation operations. In a coordinate transformation, the
same object is viewed from a new perspective. In Eqs. (1.17) and (1.18), the
same vector is viewed from two different coordinate systems. Eq. (1.20)
shows how the components of in each system are related — that is, how one
transforms the components of the single vector  from one system to another.

A similar-looking, but fundamentally different, concept is that of an opera-
tion that changes one vector to another vector. An operation can be quite gen-
eral, but here we limit the discussion to “right-handed linear orthogonal
operations,” which are described through the use of a rotation tensor, . The
equation

 (2.1)

is a symbolic way of saying that the rotation operation operates on a vector
, giving a new vector . Because is a rotation operation, the new

vector has the same magnitude as but a different orientation. The labo-
ratory components of  are related to the laboratory components of  by

 (2.2)

Here, we have two different vectors, and , expressed in one coordinate
system. For coordinate transformations, we are dealing with one vector
expressed in two coordinate systems.

If a rotated triad of base vectors is obtained by applying a rota-
tion tensor to the laboratory base vectors , then it’s straight-
forward to show that the laboratory components of the rotation tensor are
simply the transpose of the associated transformation matrix . Hence, the
laboratory components of are identical to the components of the alternative
direction cosine matrix from page 10, which is a good argument in favor

. The columns of the component matrix for contain the rotated base vec-
tors (written in terms of the laboratory basis). Ordinarily the components of a
tensor change upon a change of basis. Remarkably, however, it turns out that
the components of with respect to the rotated basis are identical to the com-
ponents with respect to the laboratory basis!* Thus,

 (2.3)

* Later on, we show that a rotation operation can be viewed in terms of an axis and angle of rotation.
The components of  will be unchanged with respect to any basis obtained by rotating the labora-
tory basis by any angle about the same rotation axis as associated with .

v
˜ v

˜ v
˜

R
˜̃

ŵ
˜

R
˜̃

w
˜

•=

R
˜̃w

˜
ŵ
˜

R
˜̃ŵ

˜
w
˜ŵ

˜
w
˜

ŵi Rijw j
j 1=

3

∑=

w
˜

ŵ
˜

e
˜ 1 e

˜ 2 e
˜ 3, ,{ }

R
˜̃

E
˜ 1 E

˜ 2 E
˜ 3, ,{ }

L[ ]
R
˜̃Q[ ]

Q[ ] R
˜̃

R
˜̃

R
˜̃ R

˜̃

R̃ij Rij=
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Other important relationships between the rotated basis and the transforma-
tion matrix are

A reader has requested  (2.4)

some more detailed/intuitive  (2.5)

explanation of these  (2.6)

equations.

I’ll try to expand discussion  (2.7)

added in future versions.

-- RMB  (2.8)

Note the distinction between Eqs. (2.4) and (2.8). We have not gotten the sub-
scripts on accidentally reversed! To obtain Eq. (2.8) from Eq. (2.4), first
note that the component of with respect to the lab basis is obtained by
dotting into . Dotting both sides of Eq. (2.4) from the left by shows
that the component of with respect to the lab basis therefore must be

, which is exactly what appears in Eq. (2.4).

Equation (1.20) involves a single vector expressed in two coordinate sys-
tems whereas Eq. (2.2) involves two vectors expressed in a single coordinate
system. In practice, this distinction is often confusing, and it is usually easiest
to tell whether you need or by considering a simple rotation for which
you know the desired behavior (such as a 90˚ rotation about one of the coordi-
nate axes). It should make some intuitive sense that the components of are
just the transpose of the components of , which since is orthogonal,
are components of the inverse of . The transformation matrix repre-
sents how vectors look to an observer attached to the rotated system. Thus, if
the tensor operation rotates the system, say, 20˚ clockwise, then stationary
vectors will appear to have rotated 20˚ counterclockwise to an observer in the
new system*. Thus and are related by rotations that are equal in mag-
nitude, but opposite in direction.

* Keep in mind, though, the vector itself is the same no matter what coordinate system is used. Both
the components and the base vectors change under coordinate transformation, but the sum of com-
ponents times base vectors is invariant.

e
˜ i R

˜̃
E
˜ i•=

Lmn e
˜ m E

˜ n•≡ Qmn=

Rij E
˜ i R

˜̃
E
˜ j•• L ji= =

R̃ij e
˜ i R

˜̃
e
˜ j•• L ji= =

e
˜ i LijE˜ j

j 1=

3

∑=

e
˜ i R jiE˜ j

j 1=

3

∑=

R ji
jth e

˜ i
E
˜ j e

˜ i E
˜ j

jth e
˜ i

R ji

R
˜̃

L[ ]

R
˜̃

L[ ] L[ ]
L[ ] L[ ]

R
˜̃

R
˜̃

L[ ]
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Equation (2.5) shows that the components of a rotation tensor are the same
as the direction cosines of the rotated base vectors — the columns of
simply contain the rotated basis! Hence, to be a rotation, the columns must
form a right-handed orthonormal triad. A routine for testing whether a matrix
is a rotation is provided in Listing 1 (Testing whether a matrix is a rota-
tion) on page A-1.

Example: rotation of an angle α about the X-axis.

For this rotation about X, the axis remains aligned with the X-axis, so
, , and . The angle that the rotated -axis

makes with fixed Y-axis is θ, so . The angle that makes with
Z is π/2-θ, so , and so on. Thus, referring to Eqs.
(1.4) and (2.6), the transformation matrix and the rotation tensor are

 (2.9)

Recall that the matrix is the same as the matrix . Also recall that the
components of position with respect to the lab system are denoted

or . Likewise, the components of that same location
with respect to the rotated system are denoted or . Thus,
Eq. (1.34) becomes

 (2.10)

or

Rij[ ]

Z

X

Y

α

Z

X

Y

z

x

y

BEFORE ROTATION AFTER ROTATION

z

y

x

x
θxXcos 1= θxYcos 0= θxZcos 0= y

θyYcos αcos= y
θyZcos π 2⁄ α–( )cos αsin= =

L
1 0 0

0 αcos αsin

0 αsin– αcos

= R
˜̃

[ ]
1 0 0

0 αcos αsin–

0 αsin αcos

=

R
˜̃

[ ] Q[ ]

X 1 X 2 X 3, ,{ } X Y Z, ,{ }
x1 x2 x3, ,{ } x y z, ,{ }

x
y
z 

 
 
 
  1 0 0

0 αcos αsin

0 αsin– αcos

X
Y
Z 

 
 
 
 

=
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 (2.11)

Rotations about a particular axis will always involve a submatrix of the form

 (2.12)

If you are ever unsure whether you have placed the “negative sign” on correct
one of the two , an easy way to check is to verify that you get the result
when the rotation angle exactly equals . In this special limiting case, Eq.
(2.11) becomes

 (2.13)

A visual inspection of the rotation sketch for a ninety degree rotation reveals
that the axis ends up aligned with the axis (so that ) and the axis
ends up parallel to the Y axis but oppositely pointed (so that ). Thus,
Eq. (2.13) gave the right result, which means we placed the negative sign cor-
rectly in Eq. (2.11). This simple “  limiting case” test can be a lifesaver.

Example: rotation of an angle α about the Y-axis.

Referring to Eqs. (1.4) and (2.6), the transformation matrix and the rotation
matrix are:

 (2.14)

Note the relative difference between Eqs. (2.14) and (2.9).

x X=
y αcos( )Y αsin( )Z+=
z αsin–( )Y αcos( )Z+=

αcos αsin

αsin– αcos

αsin
90°

x X=
y Z=
z Y–=

y Z y Z= z
z Y–=

90°

Z

X

Y

α

Z

X

Y

z

x

BEFORE ROTATION AFTER ROTATION
z

x

y

α

y

L
αcos 0 αsin–

0 1 0

αsin 0 αcos

= R
˜̃

[ ]
αcos 0 αsin

0 1 0

αsin– 0 αcos

=
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Recall that the matrix is the same as the matrix . Also recall that
the components of position with respect to the lab system are denoted

or . Likewise, the components of that same location
with respect to the rotated system are denoted or . Thus,
Eq. (1.34) becomes

 (2.15)

or

 (2.16)

For the special case of a  rotation, this becomes

,  (2.17)

which is consistent with visual inspection of the rotation figure. Namely, upon
a ninety degree rotation, little ends up pointing in the direction, little
stays equal to big , and little ends up pointing in the big direction. Since
these observations are consistent with Eq. (2.17), we can feel assured that the
negative sign in Eq. (2.16) was placed in the correct position.

Example: rotation of an angle α about the Z-axis.

Referring to Eqs. (1.4) and (2.4), the transformation matrix and the rotation
matrix are:

R
˜̃

[ ] Q[ ]

X 1 X 2 X 3, ,{ } X Y Z, ,{ }
x1 x2 x3, ,{ } x y z, ,{ }

x
y
z 

 
 
 
  αcos 0 αsin–

0 1 0

αsin 0 αcos

X
Y
Z 

 
 
 
 

=

x αcos( ) X αsin( )Z–=
y Y=
z αsin( ) X αcos( )Z+=

90°

x Z–=
y Y=
z X=

x Z– y
Y z X

Z

X

Y

α

Z

X

Y

z

x

y

z
BEFORE ROTATION AFTER ROTATION

x
y
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 (2.18)

Note the relative differences between Eqs. (2.18), (2.14) and (2.9).

Where does that negative sign go? Note how the negative in front of the
sine seems to be in a “different relative spot” when we compare equations
Eqs. (2.9), (2.14), and (2.18). The proper way to think about the location of the
negative is not to consider the submatrix of sines and cosines. Instead con-
sider the placement of the negative when moving cyclically right* one column
and cyclically up* one row from the solitary “1” on the diagonal. In all cases,
the negative in is up and right from the “1”; the negative in is cyclically
down and left from the “1”. Another (often easier) way to remember is to sim-
ply consider a simple 90˚ rotation for which you know the answer and can see
where the negative needs to be.

Faster way to write down the matrix of a rotation tensor. We’ve already
mentioned that you can construct by computing the cosines of the angles
between the laboratory axes and the embedded axes. This viewpoint can be
somewhat tedious. A better (and equivalent) procedure is to simply recognize
that the columns of are given by the rotated basis when expressed in
terms of the lab coordinates.

Consider the above example in which we rotate by an angle rotation
about the Z-axis. The three laboratory base vectors are

, ,  and  (2.19)

* Moving cyclically right from the last column means looping back to the first column. Similarly,
moving cyclically up from the top row means looping back down to the bottom row.

L
αcos αsin 0

αsin– αcos 0

0 0 1

= R
˜̃

[ ]
αcos αsin– 0

αsin αcos 0

0 0 1

=

L[ ] R
˜̃

R
˜̃

R
˜̃

[ ]

θ

E
˜ X

1

0

0 
 
 
 
 

= E
˜ Y

0

1

0 
 
 
 
 

= E
˜ Z

0

0

1 
 
 
 
 

=

α

BEFORE ROTATION AFTER ROTATION

E
˜ Y

E
˜ X

e
˜ x

e
˜ y
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Referring to the above figure, the rotated base vectors are

 (2.20)

 (2.21)

 (2.22)

or, written as column vectors,

, , and  (2.23)

These three vectors assemble together to form the columns of in
Eq. (2.18). That’s easy!

Specific example: A 90˚ rotation about the Z-axis.

Substituting  into Eq. (2.18) gives

 (2.24)

When writing down the rotation matrix for a rotation of angle α about the Z-
axis, it is often useful to quickly verify that your matrix gives the desired
result for the special case of a 90˚ rotation. This simple sanity check is very
useful for ensuring that the negative is placed on the correct off-diagonal
“sine” component.

e
˜ x αcos E

˜ X αsin E
˜ Y+=

e
˜ y αsin E

˜ X– αcos E
˜ Y+=

e
˜ x E

˜ Z=

e
˜ x

αcos

αsin

0 
 
 
 
 

= e
˜ y

αsin–

αcos

0 
 
 
 
 

= e
˜ z

0

0

1 
 
 
 
 

=

R
˜̃

Z

X

Y

90°

Z

X

Y

z

x

y x

y

z
BEFORE ROTATION AFTER ROTATION

θ 90°=

L
0 1 0

1– 0 0

0 0 1

= R
˜̃

[ ]
0 1– 0

1 0 0

0 0 1

=
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3. Axis and angle of rotation

As explained above, a rotation may be described by the direction cosines of
the rotation or transformation. These direction cosines are not all indepen-
dent. Euler’s theorem states that any rotation may be specified by an axis and
angle of rotation. The axis of rotation, , is a unit vector and the angle of rota-
tion, θ, is defined by the right hand rule with respect to the axis . The axis of
rotation has two independent components (the third being restricted to ensure
that =1). Hence, with the angle of rotation, only three numbers are needed
to completely specify a rotation and therefore only three of the nine direction
cosines in Eq. (1.4) are independent.

Because, according to Euler’s theorem, any rotation can be described by a
unit vector and a rotation angle , one can permissibly state that the
“pseudo” rotation vector defined fully describes a rotation. This is a
legal construction, but one must be cautioned that rotation operations do not
commute. Thus, if you apply one rotation followed by a second rotation, then
the result will be different if you apply the rotations in the opposite order.
Thus, even though each individual rotation can be described through individ-
ual pseudo rotation vectors, and , the pseudo rotation vector corre-
sponding to sequentially applied rotations will not generally equal .
This issue is discussed in much greater detail in Chapter 7. For the discussion
of the present chapter, we will keep the rotation angle and the rotation axis

 clearly separated.

a
˜ a

˜

a
˜

a
˜

α
s
˜

αa
˜

=

s
˜

1( ) s
˜

2( )

s
˜

1( ) s
˜

2( )+

α
a
˜
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Euler-Rodrigues formula
Euler’s theorem* states that the general displacement of a rigid body with

one point fixed is a rotation about some axis that passes through that fixed
point. For convenience in this section, we place our origin at the fixed point.

Consider a rotation operation about a (unit) axis . Consider an arbi-
trary position vector that points from the fixed origin to an arbitrary point
on the rigid body. Letting α denote the rotation angle, the sketch in Fig. 3.1
shows how  is transformed to become a new rotated vector .

The vector shown in Fig. 3.1 is the part of in the direction of , so it
must be given by

 (3.1)

The vector is defined to be the part of that is perpendicular to , so it
must be given by

=
=  (3.2)

The vector is defined to be perpendicular to both and , but with the same
magnitude as . Recalling that  is a unit vector, we therefore conclude that

=
=
=  (3.3)

* one of many!

R
˜̃

a
˜x

˜

x
˜

R
˜̃

x
˜

•

α

a
˜

s
˜

R
˜̃

s
˜

•

h
˜

t
˜

Figure 3.1. Rotation of a vector by a known angle about a known axis .
In this figure, we have introduced some helper vectors: is the part of in the

direction of , while is the perpendicular part. The vector is simply defined to
be perpendicular to both  and  as shown.

x
˜

α a
˜h

˜
x
˜a

˜
s
˜

t
˜a

˜
x
˜

s
˜

t
˜

R
˜̃

s
˜

•

αR
˜̃

x
˜

•x
˜

h
˜

x
˜

a
˜

h
˜

x
˜

a
˜

•( )a
˜

=

s
˜

x
˜

a
˜

s
˜

x
˜

h
˜

–
x
˜

x
˜

a
˜

•( )a
˜

–

t
˜

a
˜

s
˜s

˜
a
˜

t
˜

a
˜

s
˜

×
a
˜

x
˜

h
˜

–( )×
a
˜

x
˜

×
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In the last step, we have noted that because is parallel to .
Looking strictly in the plane of rotation (right side of Fig. 3.1), we note that
the transformed location of  is given by

=

=  (3.4)

From the figure on the left side of Fig. 3.1, we note that the rotated vector
 can be broken into two parts as the vector sum of  and :

=

=  (3.5)

Slight rearrangement gives the so-called Euler-Rodrigues formula:*

 (3.6)

In the next section, we will we will use this formula to extract a direct nota-
tion expression for the rotation tensor. Toward this end, it is useful to recog-
nize that the cross product is linear with respect to . Consequently,
there must exist a tensor  — called the “axial” tensor — such that

 (3.7)

This equation may be written in (Cartesian) component form as

 (3.8)

where  is the permutation symbol defined by

 (3.9)

Eliminating the common factor of in Eq. (3.8) gives the direct notation and
component formulas for the axial tensor, which we write below along with the
indicial and matrix expressions to ensure clarity:

⇔ ⇔  (3.10)

*  In a footnote about this eponymic designation, Goldstein [1], states that Hamel (Theoretische
Mechanik, p. 103) ascribes this theorem to the French mathematician O. Rodrigues (1794-1851),
but Goldstein claims this might be an error, suggesting that Gibbs was the first to put it in vector
form (Vector Analysis, p. 338). The underlying formula is apparently much older still.
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The axial tensor is skew-symmetric because the permutation symbol has the
property that . By the cyclic property of the permutation symbol,
the component is often written with the free index in the center of the per-
mutation symbol and the negative sign removed. In other words, the alterna-
tive expression, , is equivalent to Eq. (3.10).

Incidentally, note the following trigonometric identity

 (3.11)

Also note the vector identity

,  (3.12)

In the final step, we used the fact that is a unit vector to write . By
using the above two identities, Eq. (3.6) may be written as

 (3.13)

This is the form of the Euler-Rodrigues identity cited by Argyris [2].

Computing the rotation tensor given axis and angle

Given the (unit) axis and angle α, what is the rotation tensor? The
answer is found by simply differentiating both sides of the Euler-Rodrigues
formula of Eq. (3.6) by  to obtain

 (3.14)

Alternatively, using the trigonometric identity ,
Eq. (3.14) can be written as

 (3.15)

Here, is the identity tensor (represented in Cartesian coordinates by the 3×3
identity matrix). As explained in appendix B, symbol denotes a vector-vec-
tor dyad (often called the outer product), which is simply a tensor correspond-
ing to a 3×3 Cartesian matrix with components

 (3.16)

written out,
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 (3.17)

The tensor is the skew symmetric “axial” tensor associated with the axis .
In direct notation, the tensor is defined such that for any
vector . It was shown in the previous section that , where the
symbol denotes the third-order alternating tensor.* Expanding the opera-
tion  shows that the 3×3 Cartesian matrix for  is

 (3.18)

Thus, substituting Eqs. (3.17) and (3.18) into (3.14) gives the component form
of the Euler-Rodrigues (tensor) formula:

 (3.19)

This equation is coded in Listing 2 (Converting axis and angle to direc-
tion cosines) on page A-2. In mathematica, this operation can be defined by
the following function

rotationMatrix[axis_, angle_] := Cos[angle] IdentityMatrix[3]
+ (1 - Cos[angle]) Outer[Times, axis, axis]
+ Sin[angle] {{0, -axis[[3]], axis[[2]]}, {axis[[3]], 0, -axis[[1]]},
{-axis[[2]], axis[[1]], 0}};

Example. Consider a rotation of 120 degrees about an axis that passes
through the point (1,1,1).

The axis of rotation is just a unit vector that points from the origin to the
point (1,1,1):

 (3.20)

* The alternating tensor is a third order tensor with Cartesian components defined as follows:
if ;  if ; and  for all other .
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The sine and cosine of the angle are and .
Thus, using Eq. (3.19),

 (3.21)

or

 (3.22)

This result could be obtained by using the mathematica function defined on
page 23. Namely, rotationMatrix[{1, 1, 1}/Sqrt[3], 120 Degree].

Another example. Consider a rotation of 180 degrees about an axis that
passes through the point (1,1,1):

Again we have the following unit vector representing the axis of rotation:

 (3.23)

The sine and cosine of the angle are and . Thus,
using Eq. (3.19),

 (3.24)

Note that this rotation tensor is symmetric. It is straightforward to prove that
this will happen if and only if the angle of rotation is an integral multiple of
180 degrees.

This result could be obtained by using the mathematica function defined on
page 23 by executing... rotationMatrix[{1, 1, 1}/Sqrt[3], 180 Degree].

Another similar example. Consider a rotation of 180 degrees about an axis
that passes through the point (3,4,12):

We have the following unit vector representing the axis of rotation:

 (3.25)
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The sine and cosine of the angle are and . Thus,
using Eq. (3.19),

 (3.26)

Note that this rotation tensor is symmetric. As previously asserted, this will
happen if and only if the angle of rotation is an integral multiple of 180
degrees.

This result could be obtained by using the mathematica function defined on
page 23 by executing... rotationMatrix[{3, 4, 12}/13, 180 Degree].
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Numerical example (for testing computer codes). Consider a rotation of
76˚ about an axis that passes through the point (1, 3.2, 7).

The axis of rotation is a unit vector that points from the origin to the point
(1, 3.2, 7), namely

a={0.128842, 0.412294, 0.901894}  (3.27)

The sine and cosine of the angle are

sin(76˚)=0.970296
cos(76˚)=0.241922  (3.28)

Using Eq. (3.19),

 (3.29)

or

 (3.30)

This result could be obtained by using the mathematica function defined on
page 23: rotationMatrix[{1, 3.2, 7}/Sqrt[1+3.2^2+7^2], 76 Degree].

R
˜̃

[ ] 0.241922
1 0 0

0 1 0

0 0 1

=

+ 0.758078( )
0.0166003 0.0531208 0.116202

0.0531208 0.169987 0.371846

0.116202 0.371846 0.813413

+ 0.970296
0 0.901894– 0.412294

0.901894 0 0.128842–

0.412294– 0.128842 0

R
˜̃

[ ]
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Alternative way to construct the rotation tensor. The Euler-Rodrigues for-
mula of Eq. (3.14) is the most elegant means of constructing the matrix of the
rotation tensor, given axis and angle. However, you might encounter the fol-
lowing alternative algorithm, which we present here for completeness:

(i) Assume the user has supplied the components
of the rotation axis unit vector with

respect to the laboratory basis. First
ensure that the rotation axis is a unit vector by
replacing  by .

(ii) Determine the smallest component of . If this com-
ponent is , then set . This vector will be
linearly independent of , so you can construct a
unit vector  that is perpendicular to  by:

 (3.31)

(iii) Construct a third vector that is right-perpendicu-
lar to both  and  by

 (3.32)

(iv) Construct a real unitary (proper orthogonal) matrix
 whose columns contain the vectors :

 (3.33)

(v) Then the matrix for the rotation tensor is

 (3.34)

In essence, this procedure:
(1) constructs the transformation matrix  that temporarily

transforms to a basis for which  is in the 3-direction, then
(2) performs the rotation about this new 1-direction, and finally
(3) transforms back to the laboratory configuration.

Although this approach is perfectly legitimate, direct application of the Euler-
Rodrigues formula seems more elegant due to its invariant nature. A major
advantage of the Euler-Rodrigues formula is that one may take its rate to
obtain the material time derivative as a direct notation function of

 (see Eq. 12.15).
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Some properties of the axial tensor. This section (which the reader may
skip without loss) summarizes several useful formulas involving the axial ten-
sor  that was defined in Eq. (3.10):

⇔ ⇔  (3.35)

If the axial tensor is known, then the axial vector can be computed immedi-
ately by

,  (3.36a)

 (3.36b)

 (3.36c)

This operation may be written in direct notation as

,  (3.37)

The indicial form is

 (3.38)

For many calculations, it’s useful to note that

for any vector  (3.39)

Taking  as a special case shows that

.  (3.40)

The axial tensor is skew symmetric. That is,

 (3.41)

Axial tensors have interesting properties when they are raised to various pow-
ers. For example, even though is skew-symmetric, its square turns out
to be symmetric.* Specifically:

 (3.42)

If applied to an arbitrary vector , this linear operator gives the negative pro-
jection of onto the plane whose normal is . Replacing by in
Eq. (3.39) shows that

for any vector  (3.43)

* This is a nice counterexample to demonstrate that the “square root” of a symmetric tensor does not
necessarily have to be symmetric!
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If we take the third power of the axial tensor, we obtain

 (3.44)

or, using Eq. (3.40),

 (3.45)

Thus, the cube of the axial tensor is just the negative of the axial tensor itself.
Higher powers are computed similarly and alternate between being skew-
symmetric axial tensors and (negative or positive) symmetric projectors.

Recall the Euler-Rodrigues expression for the rotation:

 (3.46)

Applying the above identities, we note that

 (3.47)

Some proofs are most easily performed when the 3-direction is aligned with
the rotation axis , in which case

 and  (3.48)

where  and .
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Argyris’s form of the Euler-Rodrigues formula. Recalling Eqs. (3.39) and
(3.43), a simpler (but computationally less efficient) form for the Euler-Rod-
rigues formula follows from Eq. 3.13:

 (3.49)

or

 (3.50)

Argyris [2] introduces a “pseudo-rotation vector” defined by

.  (3.51)

Using the trigonometric identity , Eq. (3.14) can be
written in terms of this pseudo rotation vector as

 (3.52)

Of course, Argyris emphasizes the caveats that two successive rotations can-
not by represented by simply adding the pseudo-rotation vectors. Nonetheless,
the product is certainly well-defined and (in some instances) more conve-
nient.

Argyris introduces a corresponding skew-symmetric tensor associated
with  defined such that

 for any vector  (3.53)

Comparing this definition with Eq. (3.39), we note that

 (3.54)

Thus, in terms of Argyris’s pseudo-rotation tensor, Eq. (3.49) can be written

 (3.55)

We shall later see that this expression is most convenient when expanding the
rotation tensor with respect to the rotation angle.
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Corollary to the Euler-Rodrigues formula:
Existence of a preferred basis
Recall Eq. (3.19) for the Euler-Rodrigues expression for a rotation tensor
expressed solely in terms of the angle  and axis  of rotation:

 (3.56)

The above expression holds no matter what basis is used. If, however, one sets
up a basis such that the 3-direction is coincident with  then

 and ,  (3.57)

In this case, the Euler-Rodrigues formula simplifies to

 when the 3-direction is aligned with .  (3.58)

In other words, it is always possible to set up a basis such that the component
matrix of the rotation is given by the above expression. This can be very useful
in many situations. For example, we can take the trace of Eq. (3.58) to obtain

 (3.59)

Even though this formula was obtained by using the expression for in its
preferred basis, we know that it holds for any basis because the trace opera-
tion is an invariant. Hence, as exploited in the next section, the above formula
provides a means of computing the angle of rotation when only the rotation
matrix is known.
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Computing axis and angle given the rotation tensor.
Now consider the reverse problem. Suppose you have the rotation tensor
and you want the axis and angle of rotation. Actually, saying “the axis” is mis-
leading. More correctly, we should say “an axis.” After all, if the rotation angle
is zero, then the axis is arbitrary (there’s an infinite number of solutions). If a
rotation angle is measured by right-hand-rule about a rotation direction ,
then an angle of about will produce the same rotation tensor. There-
fore, the solution for the axis and angle of rotation is not unique. For nonzero
rotation angles, there are always two solutions. We know that either or
serves equally well as the rotation axis. With one choice, the rotation angle
ranges from 0 to (plus or minus an integral multiple of ). For the other
choice, the rotation angle will range from to (again plus or minus an
integral multiple of ). The principal solution will be the one such that

, measured by right-hand-rule about .  (3.60)

Once this principal solution is found, then the family of general solutions for
the axis and angle of rotation are of the form

 measured by right-hand-rule about , and
 measured by right-hand-rule about  (3.61)

where  is any integer.

Finding the principal rotation angle. Equation (3.59) gives

 (3.62)

The inverse cosine has two solutions on the interval from 0 to , so simply
knowing the cosine is usually not sufficient to determine an angle. However,
the inverse cosine does uniquely determine the principal rotation angle of
Eq. (3.60) because that angle is required to range from 0 to . Thus, the above
expression determines the principal angle of rotation. When using the princi-
pal angle of rotation, it is essential to select the direction of the axis ( or )
consistently. You have to match the principal rotation angle to the principal
axis. Matching the principal rotation angle with an oppositely-oriented axis
will give the wrong result if you try to reconstruct the rotation tensor using
the Euler-Rodrigues formula.
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Finding the principal rotation axis. Recall the Euler-Rodrigues expression
for the rotation:

 (3.63)

First we are going to show how to invert this formula to obtain as a func-
tion of . Then we are going to explain why knowing only is not adequate
for deducing the principal axis . Then we will move on to invert the above
formula for as a function of , which in turn gives the correct formula for
the principal axis.

Recalling that the axial tensor is skew-symmetric, note that the sym-
metric part of the rotation (i.e., ) is given by

 (3.64)

solving for the dyad  gives

 (3.65)

In the degenerate case of a zero rotation angle, we know that and
the rotation tensor is just the identity tensor. For this special case, Eq. (3.65)
is an indeterminate 0/0 form. However, we know that the rotation axis is arbi-
trary whenever the rotation angle is zero. Hence, it may be set equal to
without loss. The remainder of this discussion concerns the nontrivial case of
nonzero rotation angles. Recall from Eq. (3.62) that

 (3.66)

Hence, we obtain an expression for the dyad :

 (3.67)

Recall from Eq. (3.17), that

 (3.68)
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------------------=
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–( )I
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Hence, any non-zero column (or row) of must be parallel to the rotation
axis . Since we must select a nonzero column, we know that we will be
required to compute the magnitude of the column. Hence, it is computation-
ally more efficient to ignore the denominator in Eq. (3.67) and simply say that
the rotation axis can be obtained by normalizing any nonzero column (or row)
of the numerator in Eq. (3.67):

← see warning below!  (3.69)

WARNING: A key disadvantage of solving the dyad for the axis is that it
does not give any information about the direction of the axis vector . If the
principal inverse cosine is to be used to find the rotation angle from Eq.
(3.66), then the result will be an angle that ranges from 0 to . Hence, we
must select the direction of the axial vector consistently. After normalizing
a nonzero column of Eq. (3.69) to obtain a trial rotation axis , we might be
required to change the answer to in order to be consistent with our
assumption that the rotation angle lies between 0 and . Consider, for exam-
ple, a rotation obtained by a right-handed rotation of  about the  axis:

 (3.70)

We know that about the axis is not the principal solution for the angle
and axis of rotation because does not lie in the interval from 0 to .
However, Eq. (3.70) is equivalent to a rotation about the direction,
and this is the principal solution that we seek.

First, applying Eq. (3.66) gives

,  (3.71)

which correctly corresponds to the principal rotation angle. The expression in
Eq. (3.69) becomes

 (3.72)

Normalizing the only nonzero column gives

 (3.73)

which is the wrong result. The correct answer for the principal rotation axis is

a
˜
a
˜

[ ]
a
˜

R
˜̃

R
˜̃

T 1 trR
˜̃

–( )I
˜̃

+ +

a
˜
a
˜

a
˜ a

˜α
π

a
˜ a

˜a
˜

–
π

270° e
˜ 3

R
˜̃

[ ]
0 1 0

1– 0 0

0 0 1

=

270° e
˜ 3

270° 180°
90° e

˜ 3–

α ArcCos
trR

˜̃
1–

2
------------------ 

  ArcCos 0( ) 90°= = =

R
˜̃

R
˜̃

T 1 trR
˜̃

–( )I
˜̃

+ +[ ]
0 0 0

0 0 0

0 0 2

=

0

0
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,  (3.74)

At this point, we do not have any criterion that indicates that the sign of
Eq. (3.73) needs to be changed! Hence, attempting to find from only the
dyad is a dead end. Of course, one could always use the Euler-Rodrigues
formula to reconstruct the rotation tensor using Eq. (3.73). Then the axis
direction could be reversed if the result does not equal the original rotation
tensor. Again, this approach entails numerical round-off problems when try-
ing to assess equality. We now discuss a second approach.

We have seen that solving the dyad for is not a satisfactory method
for obtaining the principal rotation axis. Below, we discuss an alternative
method that instead finds the axial tensor , from which the principal rota-
tion axis may be found by applying Eq. (3.36). Again recall the Euler-Rod-
rigues expression for the rotation:

 (3.75)

This time, we will take the skew-symmetric part (i.e.,  to obtain

 (3.76)

Thus,

 (3.77)

Applying Eq. (3.36) gives the principal rotation axis:

 (3.78a)

 (3.78b)

 (3.78c)

The above formula gives the correct answer for the rotation axis regardless of
whether or not the rotation angle is the principal angle. When we seek the
principal axis, then we know that and it may therefore be computed
by the positive square root in the following formula

 (3.79)

0

0

1– 
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+ +=
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--- R
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--- R
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T–( ) αsin( )A
˜̃

= =

A
˜̃

1
2 αsin( )
------------------- R

˜̃
R
˜̃

T–( )=

a1
1

2 αsin( )
------------------- R32 R23–( )=

a2
1

2 αsin( )
------------------- R13 R31–( )=

a3
1

2 αsin( )
------------------- R21 R12–( )=

αsin 0>

αsin + 1 cos2α– + 1
trR

˜̃
1–

2
------------------ 

 
2

–= =
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For the special case that Eq. (3.78) becomes an indeterminate 0/0
form. In this case, we know that the rotation angle is either 0 (in which case
the rotation axis is arbitrary) or the rotation angle is , and the directional
sense of rotation axis is irrelevant. For this special case, the method of Eq.
(3.69) may be applied. We note that the rotation tensor is symmetric whenever
the rotation angle is exactly so the rotation axis may be take as the nor-
malization of any nonzero row of .

Method 1 algorithm for axis and angle of rotation. Given , below we
provide an algorithm for finding the principal axis and principal angle α of
rotation:

STEP 1.Compute the cosine of the angle of rotation:

 (3.80)

STEP 2.Decide whether the angle is an integral multiple of 180˚ by checking
the cosine and follow one of these branches:

• If , proceed to step 3.

• If  then . Hence, the angle of rotation is 0 and the axis of

rotation is arbitrary (so you can set it to {1,0,0} or any other convenient
unit vector}. Go to step 6.

• If , then the angle of rotation is 180˚ (= π radians). To find the

axis of rotation, simply normalize any nonzero column of . Go to

step 6.
STEP 3.Compute the angle of rotation:

 (3.81)

Note: in this step, we are forcing  because that is the
range of the arc-cosine function on all computing platforms. This
restriction entails no loss in generality because larger or negative
angles about some particular axis  can always be expressed as an
angle between 0 and 180˚ about an oppositely oriented axis, . The
steps below ensure that we select the axis orientation correctly.

STEP 4.Compute the sine of the angle:

 (3.82)

STEP 5.Compute the axis of rotation:

 (3.83a)

 (3.83b)

sinα 0=

180°

180°
R
˜̃

I
˜̃

+

R
˜̃a

˜

c 1
2
--- R11 R22 R33 1–+ +( )=

c 1±≠

c 1= R
˜̃

I
˜̃

=

c 1–=

R
˜̃

I
˜̃

+

α ArcCos c( )=

0 α 180°<≤

a
˜

a
˜

–

s + 1 c2–=

a1
1

2s
------ R32 R23–( )=

a2
1

2s
------ R13 R31–( )=
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 (3.83c)

(Note: The check in step 2 guarantees that s will not be zero.)
STEP 6.Stop.

This algorithm is coded in Listing 3 (Converting direction cosines to axis
and angle) on page A-3.

Example. Let’s use this algorithm to recover the axis and angle of rotation
from Eq. (3.22). We are given

 (3.84)

Follow the steps of the algorithm:

STEP 1.Compute the cosine of the angle:

 (3.85)

STEP 2.Note: ; therefore proceed.

STEP 3.Compute the angle of rotation:

 (3.86)

STEP 4.Compute the sine of the angle:

 (3.87)

STEP 5.Compute the axis of rotation :

 (3.88a)

 (3.88b)

 (3.88c)

or

 (3.89)

a3
1

2s
------ R21 R12–( )=

R
˜̃

[ ]
0 0 1

1 0 0

0 1 0

=

c 1
2
--- 0 0 0 1–+ +( ) 1

2
---–= =

c 1±≠

α 1
2
---– 

 acos 120°= =

s 1 1
2
---– 

  2
– 3

2
-------= =

a
˜

a1
1

2 3 2⁄( )
---------------------- 1 0–( )=

a2
1

2 3 2⁄( )
---------------------- 1 0–( )=

a3
1

2 3 2⁄( )
---------------------- 1 0–( )=

a
˜

{ } 1

3
-------

1

1

1 
 
 
 
 

=
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Another example. Let’s use the algorithm to recover the axis and angle of
rotation from Eq. (3.24). We are given

 (3.90)

STEP 1.Compute the cosine of the angle:

 (3.91)

STEP 2.Note that , so the angle of rotation is 180˚. To find the axis of

rotation, we must construct the matrix :

 (3.92)

Thus, the axis of rotation is a unit vector in the direction of {2/3,2/3,2/

3}. In other words, ={1,1,1}/ . In this particular case all the col-
umns turned out to be nonzero, but that won’t be true in general. Nor
will they typically be identical.

R
˜̃

[ ]
1 3⁄– 2 3⁄ 2 3⁄

2 3⁄ 1 3⁄– 2 3⁄
2 3⁄ 2 3⁄ 1 3⁄–

=

c 1
2
--- 1

3
---– 1

3
---– 1

3
---– 1– 

  1–= =

c 1–=

R
˜̃

I
˜̃

+

R
˜̃

I
˜̃

+[ ]
1 3⁄– 2 3⁄ 2 3⁄

2 3⁄ 1 3⁄– 2 3⁄
2 3⁄ 2 3⁄ 1 3⁄–

1 0 0

0 1 0

0 0 1

+
2 3⁄ 2 3⁄ 2 3⁄
2 3⁄ 2 3⁄ 2 3⁄
2 3⁄ 2 3⁄ 2 3⁄

= =

a
˜

{ } 3
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Numerical Example (for testing codes). Now consider the numerical rota-
tion tensor of Eq. (3.30):

 (3.93)

We wish to recover the axis and angle of rotation.

Following the algorithm:

STEP 1.Compute the cosine of the angle:

 (3.94)

STEP 2.Note: ; therefore proceed.

STEP 3.Compute the angle:

 = 1.32645 radians = 76 degrees  (3.95)

STEP 4.Compute the sine of the angle:

 (3.96)

STEP 5.Compute the axis of rotation:

 (3.97a)

 (3.97b)

 (3.97c)

Again, we wish to emphasize that the solution for the axis is unique only
within a numerical sign. Changing the sign of the axis and angle will produce
the same rotation tensor. In other words, the combination is always
a second solution.

R
˜̃

[ ]
0.254506 0.834834– 0.488138

0.915374 0.370785 0.156873

0.311957– 0.406903 0.858552

=

c 1
2
--- 0.254506 0.370785 0.858552 1–+ +( ) 0.241992= =

c 1±≠

α 0.241992( )acos=

s 1 0.241992( )2– 0.970296= =

a1
1

2 0.970296( )
------------------------------ 0.406903 0.156873–( ) 0.128842= =

a2
1

2 0.970296( )
------------------------------ 0.488138 0.311957–( )–( ) 0.412294= =

a3
1

2 0.970296( )
------------------------------ 0.915374 0.834834–( )–( ) 0.901894= =

α– a
˜

–,( )
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Method 2 algorithm for computing axis and angle. One disadvantage of
the above algorithm is that special treatment required when the angle is 0 or

degrees. One might expect some numerical round-off problems when the
angle is nearly equal to these special cases. The following alternative algo-
rithm better protects against these round-off errors and has no special cases,
but it is less efficient. This algorithm computes the axis by using Eq. (3.67),
and then assigns the axis orientation so that the rotation angle will range
from 0 to .

STEP 1.Compute the cosine of the angle of rotation:

 (3.98)

STEP 2.Compute the angle of rotation:

 (3.99)

STEP 3.Construct the matrix

 (3.100)

STEP 4.Let  be the column of the above matrix having the largest
magnitude.

STEP 5.Compute the axis of rotation:

 (3.101)

 (3.102)

 (3.103)

Here,

 (3.104)

Here, the “sign” function is defined by

 (3.105)

This algorithm is coded in Listing 3 (Converting direction cosines to axis
and angle) on page A-3.

180°

180°

c 1
2
--- R11 R22 R33 1–+ +( )=

α ArcCos c( )=

R
˜̃

R
˜̃

T 2cI
˜̃

–+

x
˜

a1
1
x
---sign x1 R32 R23–,( )=

a2
1
x
---sign x1 R13 R31–,( )=

a3
1
x
---sign x1 R21 R12–,( )=

x x1
2 x2

2 x3
2+ +≡

sign z w,( )
z if w 0≥
z– if w 0<




=
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4. Rotations contrasted with reflections

A tensor is orthogonal (or “idempotent”) if and only if . In other

words, . Note that . A rotation tensor (also known as a

proper orthogonal tensor) is a special kind of orthogonal tensor for which the

determinate is positive. Thus, and . It is often wrongly

claimed that if is orthogonal with a negative determinant, then it must be a

reflection. Before we can rebut this claim, we need to define what reflection

means. Intuitively, if is a reflection of , then should be a reflection of .

Mathematically, if , then the operator is a reflection if ;

i.e., a reflection is an operation  whose inverse  is the operation  itself:

.  or more compactly,  (4.1)

Thus, a reflection is a “square root” of the identity tensor. There are an infinite
number of such tensors. Even though the identity is symmetric, its square root
does not have to be symmetric. For example,

 (4.2)

is a non-symmetric reflection tensor that satisfies Eq. (4.1). Reflection tensors
are fundamentally different from orthogonal tensors. A tensor is a proper
reflection (or an improper orthogonal tensor) if and only if it is an orthogonal
reflection with a negative determinant:

and  (4.3)

To satisfy the first two expressions, a proper reflection must be symmet-
ric. Even if we seek only symmetric square roots of the identity tensor, there
are still an infinite number of answers. For tensors in 3D space, however, they
are all expressible in two possible forms: (1) reflections about the origin

and (2) reflections across a plane with unit normal for which
. For a reflection about the origin, all three eigenvalues of

equal and the operation results in simply . For a reflection across
a plane, exactly one eigenvalue of equals while the other two equal ,
and results in , which is like the mirror image of across
the plane perpendicular to . Note that can be written as ,
where  is a proper rotation of  about .
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Now that we have defined what is meant by a reflection, we can state that,
for tensors in 3D space, any improper orthogonal tensor can be written in
the form , where is a proper rotation. Thus any improper orthogonal
tensor (i.e., one for which ) can be written as a reflection across the
origin in combination with a proper rotation.

Q
˜̃R

˜̃
– R

˜̃ detQ
˜̃

1–=
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5. Quaternion representation of a rotation

Rotation matrices have three independent components. This can be readily
verified by recalling that the matrix is wholly determined by a unit axis of
rotation (two independent variables) and an angle of rotation (the third inde-
pendent variable). In this section we present the representation of a rotation
in terms of a quaternion.*

Shoemake’s form [3]. Any rotation operation may be represented by a
quaternion , for which the corresponding rotation matrix
may be written in the form

 (5.1)

where the four numbers  satisfy

 (5.2)

In other words,  is a point on a four-dimensional hypersphere.

A more structural direct form. The matrix in Eq. (5.1) may be written in
alternatively as

 (5.3)

The corresponding direct notation is

where  (5.4)

For later use, note that

 (5.5)

* A quaternion (also known as a “hypercomplex number”) is the division algebra over the real num-
bers generated by the elements  subject to the relations , ,

, and . For our purposes, a quaternion is a four-dimensional vector.
i j k, , i2= j2=k2= 1– ij= ji–( )=k
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2+ + + 1=
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Relationship between quaternion and axis/angle forms
Note from Eq. (5.4) that

 (5.6)

Since the trace is invariant, we also know from Eq. (3.80) that

 (5.7)

Equating the last two expressions gives a relationship between  and :

 (5.8)

The axial vector associated with  is

 (5.9)

We also know that the axial vector of  is given by

 (5.10)

Equating the last two equations shows that

 (5.11)

By virtue of Eq. (5.2), we may introduce 4-dimensional spherical coordinates
 such that

 (5.12)

Eqs. (5.8) and (5.11) therefore imply that

 (5.13)

and

 if

(  and  are both arbitrary if the angle of rotation is zero)  (5.14)

Equations (5.12) through (5.14) provide a means of converting from axis/angle
to quaternion form, and vice versa. The rotation angle may permissibly
take a full range of values from  to :

If , then  (5.15)

With this viewpoint, a rotation can be described as a point (unit quaternion)
on a four-dimensional hypersphere with coordinates .
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Without loss in generality it is always possible (by changing the direction
of the rotation axis) to presume that the rotation angle satisfies .
Thus,

If , then  (5.16)

In this case, a rotation is described by a unit quaternion lying on a spherical
hemisphere in four dimensional space. Keep in mind that both viewpoints are
legitimate, and both give the same unique rotations.

6. Dyad form of an invertible linear operator

Suppose that is a set of linearly independent vectors. Suppose
that some operator is known to be linear and its action on the “b” vectors is
known. Specifically, let

 (6.1)

Since the operation is known to be linear, then we know there must exist a
tensor  such that the above expression may be written

 (6.2)

If the six vectors and are known, then the tensor is
expressible as the following sum of dyads:

 (6.3)

Here, are the so-called “dual” vectors associated with the
 basis. Specifically, the dual basis is defined by

,  (6.4)

where  is the Kronecker delta. It follows that

, , and  (6.5)

SPECIAL CASE: lab basis. If the basis happens to be orthonor-
mal, then the dual basis is the same as the basis. In particular, if
the  basis is taken to be the lab basis , then

,  (6.6)

where

 (6.7)
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This means that the column of with respect to the lab basis is given by
the lab components of . Stated differently, if you know how transforms
the three lab base vectors, then you can immediately construct . Impor-
tantly, if  are the lab components of , then Eq. (6.8) may be written

 (6.8)

Carefully note that Eqs. (6.7) and (6.8) express the same result in two different
forms. There is not a transpose error on the subscripts of  in Eq. (6.8).

SPECIAL CASE: rotation. Now to specialize this result to rotation, suppose
that an orthonormal triad is obtained by applying a rotation to
an orthonormal triad . Applying Eq. 6.3 (noting that for
orthonormal triads), the dyad representation of the rotation is

,  (6.9)

where

⇔  (6.10)

This result can be used to construct the rotation relating two configurations.
If, for example, the edges of a cube are defined by three unit vectors

and that cube is rotated to a new orientation so that the original
three vectors become then the rotation tensor can be constructed
using Eq. (6.9).

kth F
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7. Sequential Rotations

Sequential rotations about fixed (laboratory) axes.
If a body is rigidly rotated by a rotation tensor and then subsequently

rotated by another rotation operation , then the total overall rotation ten-
sor is given by

 (7.1)

Any general rotation can always be described in terms of three sequential
rotations about the fixed laboratory axes through angles

. These angles are not equivalent to Euler angles (which are dis-
cussed in the next section).

Figure 7.1 shows a simple example of sequential laboratory-referenced
rotations in which a block is rotated 90˚ about the fixed laboratory Z-axis and
then 90˚ about the fixed X-axis. Using Eq. (2.18) for the first rotation about Z
and Eq. (2.9) for the second rotation about X, and then combining them in
Eq. (7.1), the total rotation tensor is

 (7.2)

The overall axis and angle of rotation may be determined by using the algo-
rithm on page 32.

Sequential rotation operations do not commute. That is, as shown in
Fig. 7.2, when the rotation operations are applied in a different order, the final
orientation of the block will generally be different. Namely, the rotation tensor
corresponding to Fig. 7.2 is

R
˜̃ 1

R
˜̃ 2

R
˜̃

R
˜̃ 2

R
˜̃ 1

•=

R
˜̃ X Y Z, ,{ }

ΘX ΘY ΘZ, ,{ }

Figure 7.1. Sequential rotation about fixed axes Note how the block rotates relative to
the fixed laboratory triad. The number of dots on opposite sides of honest dice always sum
to seven (hence, the side with four dots is opposite the side with three dots).

rotate 90˚ about Z rotate 90˚ about X

...then...

X

Y

Z

X

Y

Z

X

Y

Z

Rij[ ]
1 0 0

0 0 1–

0 1 0

0 1– 0

1 0 0

0 0 1

0 1– 0

0 0 1–

1 0 0

= =
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,  (7.3)

which is not equal to the rotation matrix given in Eq. (7.2). Many writers use
this counterexample as “proof” that rotation is not a vector. The proper conclu-
sion is simply that sequentially applied rotation operations do not commute.
We have already shown that, through the Euler-Rodrigues formula, that rota-
tion can be represented by a vector. The lack of commutativity of rotations
simply proves that the rotation vector of a sequential rotation is not in general
equal to the sum of the individual rotation vectors. On the other hand, as dis-
cussed later, simultaneously applied rotations do commute.

Rij[ ]
0 1– 0

1 0 0

0 0 1

1 0 0

0 0 1–

0 1 0

0 0 1

1 0 0

0 1 0

= =

Figure 7.2. A different sequence for the rotations. Note that the final orientation of the
block does not match that of Fig. 7.1, which proves that rotation operations do not com-
mute.

rotate 90˚ about X rotate 90˚ about Z

...then...

X

Y

Z

X

Y

Z

X

Y

Z
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EULER ANGLES: Sequential rotations about “follower” axes.
Euler angles are a commonly used — but awkward — way to describe any

general rotation. Rather than defining the rotation relative to the fixed labora-
tory axes, Euler angles use the embedded triad of axes that follow
the material as it rotates. The Euler angles are defined [4] as fol-
lows: First rotate the embedded triad an angle about the -axis (this causes

and to move to new orientations while remains unchanged). Then
rotate the triad an angle about its new -axis (this causes and to move
to new orientations while remains unchanged). Finally, rotate the triad an
angle ψ about its new -axis.

Converting Euler angles to direction cosines. The matrix of components
of the rotation tensor with respect to the laboratory triad is the product of
the three relative rotation matrices as follows

 (7.4)

See Listing 4 (Converting Euler angles to direction cosines.) on page
A-5. Unlike Eq. (7.1) the above three matrices are multiplied in the order of
operation. This distinction arises because Euler angle matrices are defined
with respect to the embedded follower axes whereas Eq. (7.1) is defined with
respect to the fixed laboratory axes.

Converting a direction cosine matrix back to Euler angles is more difficult
and the solution isn’t necessarily unique. One solution is provided in Listing
5 (Converting direction cosines to Euler angles.) on page A-6.

 Example: Consider the particular set of Euler angles ,
illustrated in Fig. 7.3. Euler angles are based on rotations about the embedded
follower triad. Note how Fig. 7.3 differs from Fig. 7.1 which uses the same set
of rotation angles, but referenced to a fixed triad.

Using Eq. (7.4), the rotation tensor corresponding to Fig. 7.3 is

 (7.5)

x y z, ,{ }
ϕ ϑ ψ, ,{ }
ϕ z

x y z
ϑ x y z

x
z

R
˜̃

Rij[ ]
ϕcos ϕsin– 0

ϕsin ϕcos 0

0 0 1

1 0 0

0 ϑcos ϑsin–

0 ϑsin ϑcos

ψcos ψsin– 0

ψsin ψcos 0

0 0 1

=

ϕ ϑ ψ, ,{ } = 90° 90° 0, ,{ }

Rij[ ]
0 1– 0

1 0 0

0 0 1

1 0 0

0 0 1–

0 1 0

1 0 0

0 1 0

0 0 1

0 0 1

1 0 0

0 1 0

= =
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Converting Euler angles to axis and angle. To convert from Euler angles
to a single axis and angle of rotation, simply compute the rotation tensor
using Eq. (7.4), and then use the algorithm on page 32. For example, the rota-
tion described in Fig. 7.3 gave the to the rotation tensor of Eq. (7.5), which is
identical to Eq. (3.84) for which the angle and axis were found to be 120˚ and
{1,1,1}/ .

Figure 7.3. Example of Euler Angles. . The final rotation is
quite different from the one defined with respect to the fixed laboratory triad.

ϕ ϑ ψ, ,{ } = 90° 90° 0, ,{ }

rotate ϕ=90˚ about z rotate θ=90˚ about x

...then...

x

y

z

y

x

z

z

x

y

3
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8. Series expression for a rotation

Recall Eq. (3.55), which is Argyris’s version of the Euler-Rodigues formula:

 (8.1)

This expression is valid for arbitrarily large rotation angles. This section is
devoted to expanding the above expression with respect to the rotation angle.

Keep in mind that Argyris’s pseudo-tensor  is defined

,  (8.2)

where . Thus, when forming expansions, it is important to keep
in mind that itself is proportional to (and therefore first order with respect
to) the rotation angle . Using the indicial expression for , we note that

=
=
=
=

=  (8.3)

In other words,

 (8.4)

Dotting both sides by  gives

 (8.5)

Now recall that, for any vector ,

 (8.6)

This holds for any vector , so we are allowed to consider the case in which
is the rotation axis  itself. Thus

 (8.7)

Consequently, Eq. (8.5) becomes

 (8.8)

Continuing in this manner, we find

R
˜̃

I
˜̃

αsin
α

----------- S
˜̃

1
2
---sin2 α 2⁄( )

α 2⁄( )2
------------------------- S

˜̃
2+ +=

S
˜̃

S
˜̃

α A
˜̃

=

Aij εijkak–=
S
˜̃ α A

˜̃
A
˜̃

2( )ij Aip Apj=

εipkak–( ) εpjsas–( )
εipkεpjs( )akas

δkjδis δksδij–( )akas

aia j asasδij–

aia j δij–

A
˜̃

2 a
˜
a
˜

I
˜̃

–=

A
˜̃

A
˜̃

3 A
˜̃

a
˜

•( )a
˜

A
˜̃

–=

x
˜

A
˜̃

x
˜

• a
˜

x
˜

×=

x
˜

x
˜a

˜

A
˜̃

a
˜

• 0
˜

=

A
˜̃

3 A
˜̃

–=
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, , , ,

, , , , etc.  (8.9)

In other words, all odd powers of are equal to and all even powers of
are equal to . Recalling that , this means that

, , , ,

, , , , etc.  (8.10)

These expressions will prove useful as we expand the rotation tensor with
respect to the rotation angle.

The first-order expansion of Eq. (8.1) for small rotation angles is

 (8.11)

The second order expansion is

 (8.12)

In fact, Argyris shows that the infinite series expansion is

 (8.13)

More compactly,

 (8.14)

This result may be deduced by arguments based on Lie’s group theory as is
done in quantum mechanics, but Argyris rightly asks “why use a steam ham-
mer to crack a nut?”

Though intriguing and intoxicatingly compact, the above result is fraught
with hidden pitfalls that limit its usefulness. Identities that apply for expo-
nentials of scalars do not generalize for exponentials of tensors. For example,

 unless  and  commute!  (8.15)

The above statement is expressing the known fact that, given two rotations,

and , the sequential rotation is not generally equal

to  unless both rotations share the same axis of rotation.
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9. Spectrum of a rotation

The eigenproblem for a rotation tensor requires determination of all eigen-
vectors  and eigenvalues  for which

 (9.1)

Suppose we set up a preferred basis for which the 3-direction is
aligned with the axis of rotation . Then the corresponding components of
are

with respect to basis  (9.2)

From this, we immediately see that is an eigenvector with associated
eigenvalue . For the remaining eigenpairs, we focus on the upper
submatrix. The characteristic equation for this submatrix is

 (9.3)

Applying the quadratic formula gives a complex-conjugate pair of solutions:

 (9.4)

where . The corresponding eigenvectors are . Thus, the spec-
trum of the rotation tensor is:

It can be readily verified that the rotation tensor can be reconstructed by

,  (9.5)

where the superposed “bar” denotes the conjugate. Furthermore, noting that
 and , the above equation may be written

.  (9.6)

Table 9.1: Spectrum of a rotation tensor
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Incidentally, for any nonzero rotation angle, the eigenvalues are distinct
and the eigenvectors and are therefore unique to within a complex
multiple even though it might appear otherwise in light of the following obser-
vation. Let be an arbitrary real rotation about . Then, because and
share the same rotation axis, we know that they commute:

 (9.7)

Let be an eigenvector of with eigenvalue . Dotting both sides of
Eq. (9.7) from the right by  gives

 (9.8)

or

 (9.9)

This proves that is an eigenvector of corresponding to the
eigenvalue . Stated differently, the choice of base vectors and is arbi-
trary so long as they are orthonormal and orthogonal to the rotation axis .

Sanity check. We know from elementary matrix analysis [cf., Ref. 5] that the
number of linearly independent eigenvectors must be no greater than the
algebraic multiplicity of the eigenvalue. So long as , we know that the
eigenvalues are all distinct. In this case, there can be only one single linearly
independent eigenvector associated with each eigenvector. If is an eigenvec-
tor, then Eq. (9.9) states that is also an eigenvector associated with the
same eigenvalue. Thus, Eq. (9.9) makes it appear that there are an infinite
number of linearly independent eigenvectors associated with the complex
eigenvalues. When a vector is real, then is generally linearly indepen-
dent of . However, the eigenvector is complex, so this property does not
hold. We need to demonstrate that and are linearly dependent for all
rotations about the rotation axis . Denoting the rotation angle for by
by , it’s straightforward to demonstrate that , where

. In other words, and differ only by a (possibly
complex) scalar multiple, which proves that they are indeed linearly depen-
dent.
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10. Polar decomposition

A special tensor called the “deformation gradient ” plays a pivotal role in
the field of continuum mechanics [6, 7]. This tensor carries all information
about the deformation of a material element from its known reference state to
its current “spatial” state. The polar decomposition theorem uniquely quanti-
fies how any general deformation can be viewed as a combination of material
re-orientation (i.e. rotation), material distortion (i.e. a change in shape), and
material dilation (i.e.  a change in size).

Difficult definition of the deformation gradient
In this section, we provide the mathematically rigorous definition of the

term “deformation gradient” normally found in textbooks. Later, we provide a
more intuitive (less rigorous) definition.

Suppose that the location of each material particle in a body is known at
some reference state (usually time zero). This reference position is regarded as
the “name” of the particle. For example, when we say “point ,” we mean “the
particle whose reference position is .”

The complete deformation of the body may be described by a mapping func-
tion  such that the deformed location  of the point  is given by

 (10.1)

The “motion” of a body is a sequence of deformed states over time. Hence, the
motion of a body is described by allowing the above mapping function to addi-
tionally vary with time:

 (10.2)

The deformation gradient tensor is mathematically defined to be the gradi-
ent of the mapping function:

⇒ ⇒  (10.3)

While this definition is rigorously precise, it offers virtually no intuitive
insight into the real meaning of information contained in a matrix of com-
ponents. If someone showed you a deformation gradient matrix, would you be
able to interpret it physically? Probably not if you only understand it by the
above definition.
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One way to begin to gain insight into this definition is to consider some
simple specialized mapping functions. Suppose that denotes the initial
location of a particle of interest. We want to gain better understanding of
where that particle translates and how material in the vicinity of that particle
deforms. Then it makes sense to consider a Taylor series expansion of the
mapping function, centered about the particle . Namely, to second-order
accuracy, the mapping function near the particle can be approximated by

+

+

+  (10.4)

The first term in this expansion, , is the deformed location of the
particle , so it makes sense to denote this quantity by simply :

 (10.5)

Recalling Eq. (10.3), the derivative in the second term of the above expan-
sion is the value of the deformation gradient tensor evaluated at the particle
of interest. Hence, it makes sense for us to denote this derivative by a more
compact symbol,

 (10.6)

We included the third term in the expansion of Eq. (10.4) merely to emphasize
that we could continue the expansion to as high an order of accuracy as we
desire so long as the mapping function is adequately smooth. However, in the
analysis of general non-linear mappings, you are unlikely to ever encounter
expansions that go beyond first order. Using our more compact notation
defined in Eqs. (10.5) and (10.6), the first-order mapping expansion in the
neighborhood of a particle  can be written

 (10.7)

Expressions like this are similar to writing a first order expansion of a highly
non-linear function centered about a particular point of interest. What you get
is an equation of a straight line that passes through the function at that point
and which is tangent to the curve at that point. Anyone good mathematician
will tell you that the key to solving or interpreting a nonlinear equation is to
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first understand linear functions -- that’s because all functions can be
regarded as an ensemble of linear line segments (the more you use, the better
the approximation, and in the limit of an infinite number of line segments, the
technique becomes known by the name calculus!)

Since understanding linear functions (straight lines) is an essential first
step to understanding non-linear functions, one might suspect that a good
place to begin understanding general non-linear mappings is to first study lin-
ear mappings of the form

 (10.8)

If the tensor equals the identity tensor, then this mapping describes a
pure rigid translation. If the tensor is a rotation tensor, then this map-
ping describes translation in combination with rotation. If the tensor is
not orthogonal, then this mapping is capable of describing simultaneous
translation, rotation, and shape change.

We should make amends for our sloppy terminology. Above, we said that a
straight line in the plane can be described through a linear function. Most
people would say that a linear function is expressible in the form .
A careful mathematician will tell you that this function is not linear -- it is
“affine.” A linear function must satisfy the property that

for all scalars . If this con-
dition must hold for all choices of the scalars and , then it must hold for
the particular choice . Thus, if a function is linear then it must
have the property that . The function does not satisfy
this property if is nonzero, so this function must not be linear! A truly linear
function must be expressible as for some scalar . An affine function
is simply a linear function plus some constant.

The function in Eq. (10.8) is not linear -- it is affine. However, we can
always rewrite this equation in the form . Thus,
the relative deformed position vector can always be expressed as a lin-
ear function of the relative initial position vector . For this reason, it
is sufficient for us to study the very specialized case of linear mapping func-
tions:

 (10.9)

We have already explained why a general mapping can be locally approxi-
mated by a linear mapping so long as the position vectors are defined relative
to the local point of interest. The hallmark of a nonlinear mapping is that the
local deformation gradient tensor varies with position. This is similar to the
fact that the local slope of a tangent line varies with position along the non-
linear curve. If, as a very specialized case, the deformation gradient tensor
does not vary with position, then the mapping is said to be homogenous. As
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will be explained below, a homogenous mapping has the property that initially
straight lines deform to straight lines, and flat planes deform to flat planes.
Consequently, cubes will always deform to parallelepipeds. Since inhomoge-
nous deformations can be regarded as locally linear, we conclude that infini-
tesimal cubes in general mappings will deform to infinitesimal
parallelepipeds, but the size, orientation, and distortion level of these
deformed parallelepipeds will vary in space. These ideas are illustrated in Fig.
10.1.
58



May 9, 2002 3:49 pm
Polar decomposition D R A F TR e b e c c a  B r a n o n
n

Intuitive definition of the deformation gradient
To better understand the deformation gradient, imagine a small cube-

shaped element of material whose sides are aligned with the reference basis
. Upon deformation, the cube deforms to a parallelepiped. If the

deformation is 2-dimensional, then a square deforms to a parallelogram, as

Initial Configuration
Pure

Homogeneous
Deformation

General (mapping)
Deformation

Rotation

Figure 10.1. Increasingly complex deformations. The simplest deformation, rotation,
does not involve any length changes -- cubes remain cubes of exactly the same size but of
different orientation. The next easiest deformation is “homogenous” deformation where
the changes in shape and orientation are the same everywhere throughout the body -- all
reference cubes deform to parallelepipeds of the same shape and orientation. For the most
general (inhomogeneous) deformation, infinitesimal cubes still deform to parallelepipeds,
but the orientation and distortion of these parallelepipeds varies in space.

E
˜ 1 E

˜ 2 E
˜ 3, ,{ }
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sketched in Fig.10.2. The vectors on the sides of the element deform to new
vectors . These so-called convected base vectors are not gener-
ally orthogonal nor of unit length.

With a bit of thought, one recognizes that an intuitive (non-rigorous) defi-
nition of the deformation gradient tensor states that columns of the lab
component matrix simply contain the lab components of the convected

 vectors. We write this statement symbolically as

.  (10.10)

In direct notation, this may be expressed by a sum of dyads:*

.  (10.11)

Consider, for example, that the deformation shown in Fig. 10.2, which occurs
in the plane so that points out of the page. Knowing that and are of
unit length, we can use a ruler to measure the vectors in Fig. 10.2 to obtain

* Here, two vectors written side by side  are multiplied dyadically so that . There-
fore, the dyad is represented by a matrix whose components are all zero except that the
first column has the same components as the lab components of the  vector.

g
˜ 1 g

˜ 2 g
˜ 3, ,{ }

F
˜̃

E
˜ 2

E
˜ 1

g
˜ 1

g
˜ 2

Figure 10.2. The deformation gradient tensor. A cube deforms to a parallelepiped.
This deformation is shown in the plane for simplicity. For planar deformations,
squares deform to parallelograms; of course, the out-of-plane thickness is allowed to
change as well. Note that this deformation involves a significant amount of counter-
clockwise rotation.

 becomes

 becomes

(out of page) becomes ,
which still points out of the
page for 2D deformations, but
isn’t necessarily still of unit
length; i.e., the out of plane
thickness can change.
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→

→  (10.12)

In addition to the deformation shown in Fig. 10.2, let’s further suppose that
the out-of-plane thickness of the material increases by a factor of 3 so that

→  (10.13)

The deformation gradient matrix* corresponding to Fig. 10.2 is constructed by
assembling these three vectors into the columns of :

 (10.14)

Converse problem: interpreting a deformation gradient matrix. The
intuitive definition of the deformation gradient may be applied in reverse.
Suppose, for example, that the deformation gradient matrix is known to be

 (10.15)

From this, we would identify the three deformed base vectors by the columns
of this matrix. Namely,

, ,  (10.16)

In basis notation, these would be written

, ,  (10.17)

These vectors define sides of a deformed parallelepiped as drawn in Fig. 10.3.
Not shown in that figure is the fact that , meaning that this defor-
mation has reduced the out-of-plane thickness by 20%.

* with respect to the lab basis .
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Importantly, the intuitive definition of the deformation gradient applies
only to homogeneous deformations in which all material elements within the
body deform in exactly the same way. This means that the value of is the
same for every point in the body. For general inhomogeneous deformations,
each material point can have its own different deformation gradient tensor .
In this case, the intuitive definition of the deformation gradient must be
applied to each infinitesimal material element.

The Jacobian of the deformation
A material element that deforms according to a deformation gradient

generally changes from a reference volume to a current volume . The
Jacobian of the deformation is denoted  and is defined to equal the ratio

 (10.18)

It can be shown that

 (10.19)

For example, for the deformation shown in Fig. 10.2, the Jacobian is obtained
by taking the determinant of the matrix in Eq. (10.14):

 (10.20)

which means that the material element has increased in volume by 43%.
Although the element appears to be smaller in size in Fig. 10.2, the overall
volume has increased because of the large out-of-the-page expansion.

E
˜ 2

E
˜ 1

F
˜̃

g
˜ 1

g
˜ 2

Figure 10.3. Physically interpreting a deformation gradient matrix.
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-----------=
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J det
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Invertibility of a deformation
In order for the deformation to make physical sense, the mapping function

must be “one-to-one,” meaning that any two distinct points must
deform to two distinct points — they must not map to the same location (oth-
erwise, the material will have interpenetrated itself, which is physically unde-
sirable). Likewise, a single material point must not map to two different
points — such behavior would imply the generation of new free surfaces.* A
deformation is called “globally invertible” if its mapping function is one-to-one.

A deformation is locally invertible if and only if
the deformation gradient is invertible. In other
words, the Jacobian must be nonzero: . Global
invertibility implies local invertibility, but not vice
versa (see Fig. 10.4). This is why many numerical
methods require special treatment to prevent
material interpenetration.

For physically real deformations, both the ini-
tial and the deformed volumes in Eq. (10.18) must
be positive. Hence, the condition of local invertibil-
ity may be replaced by the more restrictive condition,

 (10.21)

Sequential deformations
If a material element is deformed by a deformation gradient, , followed

by a second deformation gradient , then the total deformation gradient is
given by

 (10.22)

Note that the tensors appear in the composition in reverse order of applica-
tion. Any differential material vector in the reference configuration
deforms to a new vector  in the spatial configuration by the operation

.  (10.23)

If is given by Eq. (10.22), then first acts on and then acts on
. This is why the sequential deformation gradients appear in reverse

order of application.

* which would be desirable if one wishes to model, say, void nucleation or the formation of cracks. In
that case, the one-to-one condition would be relaxed.

χ X
˜

t,( )

interpenetration

Figure 10.4. Example of a de-
formation that is locally in-
vertible, but not globally
invertible.
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Matrix analysis version of the polar decomposition theorem

An important theorem from matrix analysis states that any square matrix
 can be decomposed into the following form

,  (10.24)

where and are proper orthogonal and is diagonal. The above
equation may be written as

,  (10.25)

where

 (10.26)

 (10.27)

 (10.28)

Note that is orthogonal, while and are symmetric tensors whose
eigenvalues are given by the diagonal components of .

In indicial form,

,  (10.29)

where

 (10.30)

 (10.31)

 (10.32)

Multiplying these equations by the laboratory basis dyads gives

,  (10.33)

where and are symmetric tensors having the same eigenvalues. Fur-
thermore, the eigenvectors of  and  are respectively

and

Then the dyad representation of the rotation tensor is

 (10.34)

These conclusions will now be presented directly from the tensor analysis per-
spective.
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The polar decomposition theorem — a hindsight intuitive
introduction

The essential idea behind the polar decomposition theorem is illustrated in
Fig. 10.5 where we have shown that the deformation from Fig. 10.2 can be
decomposed into a sequence of two separate steps:

• A stretch followed by a rotation , so that . This is the top

path in Fig. 10.5. The tensor  is called the right stretch because it

appears on the right in the expression .

Alternatively, the deformation may be decomposed in similar steps applied in
the opposite order:

• A rotation  followed by a stretch , so that . This is the

bottom path in Fig. 10.5. The tensor  is called the left stretch.

In Fig. 10.2, a circumscribed square and an inscribed shaded circle* have
been “painted” onto the deforming material to help illustrate the meaning of
the term “stretch.” A stretch is a special type of deformation for which the
deformation gradient is both symmetric and positive definite. So a stretch is
any deformation for which . For any pure stretch, there always exists
three directions (the eigenvectors of the stretch tensor) along which in which
the material is stretched or compressed, but not rotated. Material fibers that
are originally aligned with the principal stretch directions may change length,
but they do not change orientation under a pure stretch. The polar decomposi-
tion theorem says that any general deformation can be decomposed into a
pure stretch in combination with a rigid rotation.

The directions marked are the principal stretch directions for the right
stretch . They change length but don’t change orientation during the appli-
cation of . The directions marked are the principal stretch directions for
the left stretch . They change length but don’t change orientation during the
application of .

Incidentally, note that

 (10.35)

* which would be a sphere for 3D deformations
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F
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δ
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V

δ
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U
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˜ 1

U

E
˜ 1

E
˜ 2

g
˜ 1

g
˜ 2

Figure 10.5. Visualization of the polar decomposition. This figure shows that the same de-
formation from Fig. 10.2 can be visualized as two different paths, each of which involves
an intermediate configuration. The upper path first compresses the material by a fac-
tor of in the direction of the vector labeled and then rotates counterclockwise by .
The same deformation is achieved on the bottom path by rotating by and then compress-
ing by a factor of in the direction of the vector labeled . Note that is obtained by
rotating by . In these figures, we have “painted” a circle (or sphere in 3D) on the ref-
erence cube to show how it deforms into an ellipse (or ellipsoid in 3D). The vectors and

 lie on the major axes of the ellipse.
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This section has been called a “hindsight” introduction because the princi-
pal directions of the stretch are not normally known a priori. Finding these
directions is a key task for the polar decomposition theorem.

In Fig. 10.5, the orthonormal triad of vectors , , and (which
points out of the page for planar deformations) are the principal directions of
the right stretch . These principal stretch vectors do not change orientation
during the application of . They change direction only upon application of
the rotation. Note that other material fibers which are not aligned with princi-
pal directions of generally do change orientation even before the rotation is
applied. Thus, the rotation tensor describes overall material reorientation, but
not the reorientation of individual material fibers.

A visual inspection of Fig. 10.5 shows that material fibers originally in the
direction of appear to change length by a factor of about for that par-
ticular example. The fibers in the direction of do not appear to change
length. Stated differently, the ratio of their deformed length to their unde-
formed length is 1. If we suppose that the out-of-plane thickness increases by
a factor of 3, then fibers in the direction of will change length by a factor of
3. The matrix for is diagonal in the principal stretch basis. The components
are the ratios of deformed length to undeformed length. Thus,

with respect to the  triad  (10.36)

In order to express this stretch tensor in terms of the reference basis we must
perform a coordinate transformation. To do this, first we use a ruler to mea-
sure the components of each of the with respect to the reference basis
to obtain:

,  (10.37)

These arrays are assembled into columns to form the direction cosine matrix
 from Eq. (1.26):

 (10.38)

Applying Eq. (1.33) gives us the components of with respect to the reference
basis:
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=  with respect to the  reference triad  (10.39)

This tensor is symmetric. It is also positive definite. It is therefore a stretch
tensor.

To construct the rotation tensor, we would use a protractor to measure the
angle through which the ellipse in Fig. (10.5) has rotated. The result appears
to be about and, because the deformation is planar, the axis of rotation is
in the  direction. Hence, the rotation tensor  must be

 with respect to the  reference triad  (10.40)

Multiplying the above two tensors gives

= with respect to the  reference triad,  (10.41)

which is the same as the matrix derived directly in Eq. (10.14). Thus, we have
demonstrated that the decomposition into a stretch followed by a rotation does
indeed exist for the sample deformation in Fig. 10.5.

This section was labeled “hindsight” because we produced the principal
stretch directions by serendipity (i.e., “out of thin air”) and then we demon-
strated that they did indeed permit the decomposition into stretch followed by
rotation.

The next section presents the polar decomposition in a more classical man-
ner.

A more rigorous (classical) presentation of the polar
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decomposition theorem

THEOREM: For each invertible tensor there exists a unique orthogonal ten-
sor , a unique symmetric positive definite “right stretch” , and a unique
symmetric positive definite “left stretch”  such that

 (10.42)

WARNING: the descriptors “symmetric” and “positive definite” are
requirements, not consequences. Keep in mind that a stretch must be both
symmetric and positive definite — a tensor can be symmetric without
being positive definite. It is depressingly common for researchers to
erroneously declare a deformation gradient to be a stretch simply because
it is symmetric. However, if only symmetry were tested, the rotation
matrix of Eq. (3.24) would be wrongly identified as a stretch. Checking
symmetry is not enough to declare a symmetric matrix to be a stretch —
one must also prove positive definiteness! It can be shown that the
deformation gradient  is symmetric if and only if the rotation angle is
an integral multiple of .

COMMENT: The determinant of  will have the same sign as the
determinant of . Hence, the orthogonal tensor  will be a proper
rotation if and only if . We are interested in second-order tensors
in 3D space so that  is a  matrix. If the determinant of  is
negative, then we can always perform the polar decomposition of ,
which has a positive determinant in 3D space. Thus, without loss in
generality, we may assume that the orthogonal tensor in Eq. (10.42) is
a proper rotation.

PROOF: It is important to understand the flow of the following proof. The
polar decomposition theorem has the following structure:

GIVEN:  is invertible

THEN: there exist tensors , , and  such that

(i) ,
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Corollary: , , and are unique. They are the only tensors that satisfy

all of the conditions (i) through (iv).
To prove the theorem, we will first assume that , , and do indeed exist.
We will then derive explicit formulas for them as functions of . Since such
formulas will have been derived on the premise that , , and exist, we
will need to then verify satisfaction of all of the conditions (i) through (iv)
listed above. Assume for now that the decomposition (i) does indeed
exist. Then , where we have used the properties that
(iii) is symmetric and (iv) is orthogonal. Consequently the product

 must equal , and the stretch  must be given by

, where  (10.43)

The helper tensor  is positive definite because

=

> 0  for all nonzero vectors  (10.44)

Of course the magnitude of any vector is non-negative, and therefore
. Our assertion that is a stronger condition. To

rule out the possibility that , we must recall that (by premise)
is invertible and therefore can never be zero for any nonzero . Note
that the helper tensor is symmetric. It is therefore diagonal in its principal
basis. By finding the eigenvalues  and eigenvectors  of , we may write

 with respect to the principal  triad

where each eigenvalue  is strictly positive.  (10.45)

In basis notation,

, where each  (10.46)
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We must be very careful when defining the meaning of the “square root”
in Eq. (10.43). A positive definite and symmetric matrix generally has an
infinite number of square roots, of which at least 8 are symmetric and only one
is both symmetric and positive definite.* To ensure that our Eq. (10.43)
defines a unique stretch , we demand that the “square root” must be
interpreted as the unique positive definite square root. Namely, the right
stretch tensor  is given by

,

where  and  (10.47)

In matrix notation,

 with respect to the principal  triad

where  (10.48)

In practice, this result is phrased in terms of the laboratory basis as

 with respect to the lab  triad

where  and  (10.49)

The column of the transformation matrix contains the lab components
of the eigenvector. There is only one square root of that is both symmet-
ric and positive definite. Hence, the stretch defined in Eq. (10.48) is the only
stretch that satisfies the premise of the theorem, so we have proved that if
exists, then it is unique. Once is known, the rotation tensor can be found by

 (10.50)

This is a single valued operation. Hence, uniqueness of guarantees unique-
ness of . The tensor  is indeed orthogonal because

 (10.51)

By similar arguments, the left stretch  must be given by

,  where  (10.52)

* To understand the reason for these statements, consider the following symmetric and nonsymmetric

square roots of the  identity matrix: , , , ,
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As before, to ensure that will be a proper stretch, must be taken to be
the unique symmetric and positive-definite square root. Once is known, an
orthogonal tensor  can be found by

 (10.53)

So far, we have proved existence of stretches, and , and rotations, and
, such that

 (10.54)

All that remains is to prove that the orthogonal tensor from the left stretch is
the same as the orthogonal tensor from the right stretch. In other words, we
must prove that . Applying the definition of the left stretch, we know
that from which it follows
that . Substituting this result back into Eq. (10.54), shows
that  and therefore

.  (10.55)

Working with the inverse gradient. For some applications (such as simple
shear), it is easier to work with the inverse of the deformation gradient. In
such cases, the stretches may be computed by

and  (10.56)

Since , the rotation can be computed by

and  (10.57)

A good example of a situation where you would work with the inverse gradient
is in finite element calculations. In a Lagrangian calculation, the nodes move
with the material. Consequently, the reference position of each node is con-
stant throughout time for a Lagrangian code. The current position of a node
varies in time. From a computational standpoint, it is often easier to use the
element shape functions to compute the gradient of with respect to . This
gradient is the inverse deformation gradient:

 (10.58)

Equations (10.56) and (10.57) show that it is not necessary to invert Eq.
(10.58) in order to perform a polar decomposition.
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The *FAST* way to do a polar decomposition in two
dimensions

For planar deformations, the deformation gradient tensor is of the form

, where  (10.59)

We claim by serendipity* that the polar decomposition can be performed
rapidly by the following formula:

, and  (10.60)

where

 (10.61)

Beware! You must define and separately in order to uniquely deter-
mine the rotation angle. It is certainly true that

, ← not enough!  (10.62)

This relation does not uniquely define the rotation angle because there are
always two angles in the range from 0 to that satisfy the above equation.
By contrast there is only one angle in the range from 0 to that satisfies
Eq. (10.61).

* It’s easy to verify that our formulas yield an orthogonal [R] and a symmetric [U]. It is straightfor-
ward, but tedious, to also prove that our formula gives a positive definite [U] matrix. This property
is essential in order to confirm the validity of our serendipitous formulas.

F[ ]
F11 F12 0

F21 F22 0

0 0 F33

= F33 0>

R[ ]
θcos θsin– 0
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0 0 1

= U[ ] R[ ] T F[ ]=
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F11 F22+( )2 F21 F12–( )2+
--------------------------------------------------------------------------=

θsin
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--------------------------------------------------------------------------=
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For computer applications, the following coding will very rapidly perform a
planar polar decomposition:

c = f(1,1)+f(2,2)
s = f(2,1)-f(1,2)
d = sqrt(c*c + s*s)
c = c/d
s = s/d

R(1,1)=c
R(2,2)=c
R(1,2)=-s
R(2,1)=s

U(1,1)=c*F(1,1)+s*F(2,1)
U(1,2)=c*F(1,2)+s*F(2,2)
U(2,1)=c*F(2,1)-s*F(1,1)
U(2,2)=c*F(2,2)-s*F(1,2)

R(3,3)=1.
R(1,3)=0.
R(2,3)=0.
R(3,1)=0.
R(3,2)=0.

U(3,3)=F(3,3)
U(1,3)=0.
U(2,3)=0.
U(3,1)=0.
U(3,2)=0.
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11. “Mixing” or interpolating rotations

Eulerian physics codes (or Lagrangian codes that remap quantities) must
routinely handle the task of mixing two or more materials in a computational
cell and assigning reasonable homogenized values for the field variables of the
mixture. In the absence of specific arguments to the contrary, field variables
are typically mixed by simple mass or volume averaging. This approach, how-
ever, can be unsatisfactory when mixing rotation tensors because the sum of
two orthogonal tensors is not itself generally orthogonal. A similar problem
occurs when attempting to interpolate between two rotations in a discrete rep-
resentation of a field.

Code architects are faced with an interesting situation: should they allow
the mixed value of orthogonal tensors to be nonorthogonal, or should they
develop a rule for forcing the mixed rotation to be orthogonal. Surprisingly,
there are some arguments in favor of allowing a mixture of rotations to not be
a rotation itself (the line of reasoning is that, statistically speaking, averages
shouldn’t be expected to be representative of the things being averaged*).
However, subroutines that require a rotation often presume that the rotation
supplied will indeed be orthogonal, and therefore, one needs a rule for mixing
rotations that will always give an orthogonal result.

Below we list possible solutions to this problem, starting with what we
believe will give the best results, and working down to less viable solutions.

proposal #1: Map and re-compute the polar decomposition
The initial position vector may be regarded as a field in its own right. In

terms of the mapping function of Eq. (10.1), it is given by

 (11.1)

The vector may be advected just like any other field. This is particularly
easy to do since the Lagrangian time rate of is always zero. Thus, the value
of at a Lagrangian tracer particle or at a Lagrangian mesh point remains
fixed over time. For Lagrangian finite element calculations, the value of at
any point may always be determined by using the shape functions. When it
is determined that the mesh should be moved in a non-Lagrangian manner
(as for remeshing or for ALE calculations), the value of can be mapped to
the new locations of the nodes just as any other variable would be mapped to
the nodes.

* For example, the average location of a point in a body (i.e., its centroid) need not be a point that is
actually in the body. More colorfully, the Surgeon General should allocate research funding based
on a composite “average” human being who has one breast and one testicle even though there is no
one who fits this description!
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In short, the field for is very easy to monitor for all time. To determine
the polar rotation and stretch, we recommend recomputing the inverse defor-
mation gradient tensor by taking the spatial gradient of the  field. Namely,

⇒ ⇒  (11.2)

One could always invert this matrix to obtain the new deformation gradient,
but that would entail unnecessary computational cost. It is much more effi-
cient to work directly with . Recall that

 (11.3)

Noting that , taking the inverse gives

 (11.4)

The stretch  can be obtained directly from  by

 (11.5)

and then the rotation is obtained directly from Eq. (11.4) as

 (11.6)

The above boxed calculations are fairly easy to perform since would be
already available. With this approach, it is never necessary to invert a non-
symmetric matrix. For planar calculations, the shortcut of Eq. (10.59) can also
be appropriately modified to work directly with .

proposal #2: Discard the “stretch” part of a mixed rotation.
A second technique for directly mapping/mixing rotations would be to go

ahead and average the rotation tensors to obtain a new tensor that is not
orthogonal, but which is probably “nearly” orthogonal. We would then project
the nonorthogonal tensor to the “nearest” orthogonal tensor. This would
involve a minimization calculation. Namely, given a tensor (the nonorthog-
onal mixed rotation), find the tensor such that and is
minimized. The difficulty here is that, to our knowledge, this minimization
problem has no known solution. I suspect that the polar rotation tensor cor-
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responding to the tensor is the solution to this minimization problem. If so,
then this proposal suggests that the orthogonal tensors be mixed and the
polar decomposition should be applied to the resulting (generally non-orthogo-
nal) mixture.

Consider an initial tensor that is almost (but not quite) orthogonal. Spe-
cifically, suppose that the largest eigenvalue of is significantly
smaller than unity. Then the associated polar rotation tensor is approximately

 (11.7)

If the above formula is applied recursively to obtain increasingly better esti-
mates for the rotation, then quadratically to the nearest orthogonal matrix in
tensor space. Typically, one iteration will suffice. Of course, if the process con-
verges, then it converges to an orthogonal result. However, we are not certain
whether or not the converged result will necessarily equal the actual rotation
tensor associated with the ORIGINAL F tensor.

Proof:*. Our goal is to find the orthogonal tensor that is closest to a given
(nearly orthogonal) tensor .

The proof begins with at Taylor expansion:

 (11.8)

The substitution  yields

 (11.9)

The above expansion was for scalar arguments, but it also extends to any sym-
metric tensor . In particular, if we pick the exponent , we get

 (11.10)

Let’s turn our attention to the polar decomposition of :

 (11.11)

Define

 (11.12)

Therefore

 (11.13)

We know that

* This proof follows the basic ideas communicated in an email to me from Glynne Casteel, though he
used the SVD decomposition from matrix analysis. Our presentation recognizes that such a decom-
position is equivalent to the polar decomposition.
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 (11.14)

If the eigenvalues of are close to unity (i.e., if is very nearly orthogonal),
then the eigenvalues of  are also close to unity. By Taylor expansion,

 (11.15)

Putting this into Eq. (11.14) shows that, to second order,

 (11.16)

proposal #3: mix the pseudo-rotation-vectors
Another strategy for mixing rotation tensors is to use a conventional mass

or volume average of the rotation vectors and to then convert the average rota-
tion vector back into a rotation tensor. The algorithm is as follows:

STEP 1.For each rotation tensor  in the mixture, use the technique

described on page 32 to compute the rotation vector .

STEP 2.Use ordinary volume or mass averaging to compute the average
rotation vector.

STEP 3.Use Eq. (3.14) to construct the associated mixture rotation tensor .

The above scheme for averaging rotations basically assumes that all the indi-
vidual rotations are applied simultaneously, as discussed on page 87. The fact
that angle and axis are not unique could cause problems with this method.

proposal #4: mix the quaternions
Similar to the preceding proposal, the quaternions for each rotation could

be computed and interpreted as points on a four-dimensional unit sphere. The
normalized vector sum of the rotation quaternions would probably do a decent
job at assigning a mixed rotation.
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12. Rates of rotation

The “spin” tensor
Consider a vector that is embedded in the rigidly rotating body. Let

denote the initial position of . Then

 (12.1)

Suppose that the rotation of the body is constantly changing. Then .
Note that is not a function of time (it is simply the initial position, which is
forever constant). Thus, the time rate of the embedded vector  is

 (12.2)

From Eq (12.1), we know that . Substituting this result
in Eq (12.2) gives

 (12.3)

where the second-order tensor  is called the spin tensor* and is defined

 (12.4)

For later use,  may be expressed in terms of  by

 (12.5)

Consider the orthogonality condition

 (12.6)

Taking the time rate gives:

 (12.7)

Substituting Eq. (12.5) into Eq. (12.7) and imposing Eq. (12.6) shows that

 (12.8)

In other words, the spin tensor is skew-symmetric. Consequently, as discussed
in the next section, it has an associated axial vector which is defined such
that Eq. (12.3) becomes

 (12.9)

* If the rotation tensor  is the polar rotation, the spin  is called the polar spin.
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The angular velocity vector
Just as rotations are associated with an axis and angle of rotation, a spin

tensor also has an associated angular velocity vector, which is given by the
so-called “axial” or “dual” vector:

, or  (12.10)

The operation is reversible. Given the angular velocity vector, the associated
angular velocity tensor is computed by.

or  (12.11)

The explicit relationships are

, ,  (12.12)

The matrix relationship is

 (12.13)

Dotting the spin tensor onto an arbitrary vector is equivalent to crossing
the angular velocity vector  into . That is,

 (12.14)

As a matter of fact, the angular velocity vector was constructed specifically so
that this relationship would hold.

Final question: what relationship, if any, does the angular velocity vector
have with the angular rotation vector? If the rotation axis is held fixed,
then . However, if the axis of rotation is a function of time, the rela-
tionship between the rotation vector and the angular velocity vector is highly
nonlinear due to the presence of coriolis-type terms, as discussed in the next
section.

Ω
˜̃

ω
˜

1
2
---ε
˜̃̃
:Ω

˜̃
–= ωi

1
2
---εijkΩ jk– 1

2
---ε jikΩ jk= =

Ω
˜̃

ε
˜̃̃

ω
˜

•–= Ωij εijkωk– εikjωk= =

ω1= Ω23– =Ω32 ω2= Ω31– =Ω13 ω3= Ω12– =Ω21

Ω
˜̃

[ ]
0 ω3– ω2

ω3 0 ω1–

ω2– ω1 0

=

Ω
˜̃

u
˜ω

˜
u
˜

Ω
˜̃

u
˜

• ω
˜

u
˜

×≡

a
˜ω

˜
α̇a

˜
=

80



May 9, 2002 3:49 pm
Rates of rotation D R A F TR e b e c c a  B r a n o n
n

Angular velocity in terms of axis and angle of rotation
Taking the time rate of Eq. (3.14) gives  as

 (12.15)

where  and . The transpose of Eq. (3.14) is

 (12.16)

After much simplification,*  the spin ( ) is given by

 (12.17)

where

, and  (12.18)

Taking the axial vector of Eq. (12.17) gives the angular velocity vector as

 (12.19)

Difference between vorticity and polar spin.
In continuum mechanics, the velocity gradient tensor is the spatial

derivative of the velocity field. Thus, if is velocity and is the spatial posi-
tion vector, then

 (12.20)

The so-called “rate” of deformation tensor is defined to equal the symmetric
part of the velocity gradient:

 (12.21)

The vorticity tensor is defined to be the skew-symmetric part of the
velocity gradient tensor:

 (12.22)

The vorticity vector  is the axial vector associated with :

 (12.23)

Written out in Cartesian components,

* It is critical to note that  and therefore .
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 (12.24)

A fundamental theorem from continuum mechanics states that the velocity
gradient is related to the deformation gradient tensor  by

 (12.25)

Recall the polar decomposition:

,  (12.26)

where is the orthogonal rotation tensor and is the symmetric positive
definite left stretch. Substituting Eq. (12.26) into (12.25) and noting that

 gives

 (12.27)

where the polar spin  is defined

,  (12.28)

The polar angular velocity vector  is defined

 (12.29)

The purpose of the remainder of this section is to summarize Dienes’s deriva-
tion [8] of the difference between  and . The transpose of Eq. (12.27) is

 (12.30)

Post multiplying Eq. (12.27) by  gives

 (12.31)

Taking the skew-symmetric part of both sides gives

 (12.32)

where
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 (12.34)

We are interested in the difference between the vorticity and the polar spin. In
other words, we seek to solve Eq. (12.32) for the tensor . The tensor is
skew-symmetric, so there exists an axial vector  such that

 (12.35)

Similarly, there exists an axial vector  such that

 (12.36)

Thus, the component form of Eq. (12.32) can be written

 (12.37)

Multiplying both sides by  and using the identity  gives

 (12.38)

Noting that and , this
becomes

 (12.39)

or, eliminating all Kronecker deltas,

 (12.40)

This may be written in direct notation as

 (12.41)

Recalling Eq. (12.34), we note that and therefore the above equa-
tion may be inverted to give

 (12.42)

From this we see that the polar spin equals the vorticity if and only if .
Recalling Eq. (12.33), this will occur if and only if and commute,* which
implies that there must exist a triad of orthonormal vectors that are principal
directions of both and . This is naturally the case for rigid motion where

and . Another (less trivial) way for and to commute occurs
when the principal directions of remain constant throughout all time. In
this case both the vorticity and the spin are zero. Finally, note that

where a prime denotes the deviatoric part.
This identity implies that there is a difference between the vorticity and spin
only if the deformation involves distortion — isotropic expansion or contrac-
tion has no influence on the distinction between vorticity and spin. For this
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reason, Dienes [8] considered simple shear as a counterexample to demon-
strate that the Jaumann stress rate (based on vorticity) predicts anomalous
oscillatory shear stresses when used with a constant modulus hypoelastic con-
stitutive law. The polar rate predicts an intuitive monotonically-increasing
shear stress.

The (commonly mis-stated) Gosiewski’s theorem
In this section we prove the following theorem:

If is a unit material fiber that is instantaneously coincident with a
principal direction of the “rate” of deformation , then its instantaneous
rate of rotation is given by the vorticity; i.e., at this instant, .

This theorem is often misinterpreted to mean that the principal directions of
rotate according to the vorticity . To the contrary, it is only the material

fibers parallel to the principal directions of that rotate according to the vor-
ticity. These material fibers do not generally remain aligned with the principal
directions of . Hence, the above theorem (1) applies only to material fibers
and (2) only at the instant when they pass over principal directions of —
any time thereafter, they rotate at a speed that is not related to the vorticity.

Before proceeding with the proof of the correct theorem, let’s first provide a
counterexample that discredits the common false interpretation. We wish to
prove that the principal directions of do not rotate according to the vortic-
ity. To do this, we use simple shear as a counterexample. For this canonical
motion, the vorticity is a nonzero constant tensor, but the tensor is also con-
stant, so its principal directions can’t possibly rotate. Under simple shear, the
deformation gradient is of the form

 (12.43)

where is a time-varying measure of the amount of shear. The corresponding
rate of deformation and vorticity tensors are

and  (12.44)

Note that the principal directions of the rate of deformation are ,
and which never change with time. According to the misin-

terpretation of Gosiewski’s theorem, this would be possible only if the vorticity
were zero, which is false. This completes the proof that does not govern the
rotation rate of the principal directions of .
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Proof of the correct theorem. For clarity, we consider a homogenous defor-
mation field. Let denote a material fiber. By this, we mean that there exists
a material vector  in the reference configuration such that

 (12.45)

The reference material fiber is fixed in time, so taking rates gives

 (12.46)

From continuum mechanics, we know that , where is the sym-
metric part of the velocity gradient. Therefore, the above equation becomes

 (12.47)

Decomposing into its symmetric part plus its skew-symmetric part
gives

 (12.48)

This relationship holds for any material fiber . We wish to determine what
part of is caused by change in length and what part is caused by change in
orientation. Towards this end, we write

where  (12.49)

where f is the magnitude of  defined by

,  (12.50)

and  is a unit vector in the direction of . In other words,  and

 (12.51)

Taking rates of the above three equations, we note that

 (12.52)

 (12.53)

 (12.54)

Hence, Eq. (12.48) may be written

 (12.55)

Dotting both sides by  gives

, where  (12.56)

Here, we have noted that because is skew symmetric. Sub-
stituting Eq. (12.56) back into Eq. (12.55) and dividing by  gives
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 (12.57)

The above boxed equations hold for any material fiber regardless of its
instantaneous orientation.

If the material fiber happens to instantaneously coincide with a principal
direction of then at this instant, and therefore

. Consequently, at this instant in time, the first two
terms in Eq. (12.57) cancel leaving only , which proves the theorem
that the vorticity governs the angular velocity of material fibers at the
moment when they are coincident with a principal direction of . This special
theorem seems of little practical use since the same material fiber will not be
rotating according to the vorticity an instant later. We have included the theo-
rem here only for the purpose of disproving its common mis-interpretation.

Rates of sequential rotations
Consider three rotations, about the X-axis, about the Y-axis, and
about the Z-axis. If these rotations are applied sequentially (i.e., the first

followed by the second and then the third), we know that the total rotation is
given by

 (12.58)

Conversely, we also know that for any rotation , there exist three rotations
 about the laboratory axes such that Eq. (12.58) holds.

If the three axis rotations are known for all time, how is the spin tensor
( ) related to the individual spin tensors for each of the axis rota-
tions?

The time rate of Eq. (12.58) gives

 (12.59)

Substituting Eq. (12.5) for and making analogous substitutions for
shows that

 (12.60)

Thus, in this formulation, we can see that the spin tensor also depends on the
order of application of the sequentially applied rotation tensors. In the limit of
infinitesimally small rotations (but not necessarily small rotation rates), each
of the are approximately equal to the identity tensor and we obtain the
result that

 (12.61)

Thus, for infinitesimal sequential rotations,
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 (12.62)

For the special case that the rotation axis of each  is constant, we have

 (12.63)

Even for this special case where each rotation axis is constant, the rotation
axis of the total rotation is not necessarily constant because it may be varied
by changing the individual rotation rates . This result moti-
vates the study of simultaneously applied rotations.

Rates of simultaneous rotations
Consider the rotation illustrated in Fig. 7.3. By visual inspection, the rota-

tion axis passes through the point (1,1,1), and the rotation angle is . One
could imagine directly rotating the body about the axis so that rotations would
be simultaneously occurring about all axes. For a rotation that is applied
directly from zero angle to final angle without changing the axis of rotation,
the angular velocity vector is

 (12.64)

writing the axis as , this equation becomes

 (12.65)

where

 (12.66)

Once the rotation is complete, the final rotation tensor is given by the Euler-
Rodrigues formula, Eq. (3.14). In view of Eq. (12.65), this final rotated configu-
ration can be visualized as the simultaneous application of three rotations
about the three coordinate axes with the respective rotation angles given by

.  (12.67)

Thus, for the rotation in Fig. 7.3, the simultaneously applied angles of rota-
tion about each coordinate axis are .

Conversely, given the rotation angles , the total rotation vector
is given by

 (12.68)

Importantly, note that is not equivalent to . In other words, it is not
admissible to add an integral multiple of to a coordinate rotation angle.
Referring to Eq. (12.66), the individual coordinate angles must always be less
than or equal to the total rotation angle. Furthermore, it is important to real-
ize that

 (12.69)
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Equality holds only if the total rotation axis never changes with time.

In practice, angular velocity generally changes in both magnitude and ori-
entation. Hence rotations are not generally achieved by rotations about a con-
stant axis. Nevertheless, given any rotation tensor , there always exist a
rotation axis and angle regardless of whether the rotation was actually
achieved directly through the axis and angle of rotation. There are corre-
sponding coordinate rotation angles .

For simultaneous rotations about the coordinate axes, the relationship

 (12.70)

always holds, but because the magnitudes of the angular velocities may vary,
the total axis of rotation generally varies with time and is not coincident with
the direction of the angular velocity vector.

To find the total rotation axis, the total rotation tensor is first found by
solving Eq (12.4) as a differential equation. Once the total rotation is found,
the angle and axis of rotation may be determined via Eqs. (3.86) and (3.83).
Hence, the axis and angle of rotation are always well-defined, and they may be
decomposed into coordinate rotations, but they are related to the angular
velocity in a highly-nonlinear way.

The principal point of this section is to show that it is possible to define
rotation vectors, but they are of limited use because their time rates are not
related to the angular velocity in a straightforward way.
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13. Random Rotations

For problems at the mesoscopic scale where, for example, crystal anisot-
ropy is modeled, simulations often require a means of randomly assigning a
rotation of the crystal from its unit cell reference orientation to the actual ori-
entation [10]. For a macroscopically isotropic material of uniform grain size, a
uniformly-random distribution of grain orientations is desired. This section
discusses how to achieve such a distribution.

Statistical notation

We will use the notation to denote the distribution function for any
continuously random scalar variable . The distribution function is defined
such that the probability that  is given by

 (13.1)

The corresponding cumulative distribution is denoted  and is defined

 (13.2)

Thus,  is the probability that .

We will let denote joint distributions for two variables and .
The joint distribution is defined such that the probability that and

 is

 (13.3)

Finally, if is a random vector in 3D space, then the distribution function
is defined such that the probability that lies in a region of space is

,  (13.4)

where is the volume element. Any vector can be alternatively expressed
in terms of, say, spherical coordinates . Thus, there exists a joint distri-
bution function . Importantly,

 in general.  (13.5)
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Uniformly random unit vectors — the theory
Before considering the case of a random rotation, first consider how to ran-

domly select a unit vector such that no unit vector orientation is more likely
than any other. Unit vectors may be regarded as points on the unit sphere.
Therefore a unit vector is completely specified by the spherical coordinates

 and  (not to be confused with Euler angles of the same symbols):

 (13.6)

We want any point on the unit sphere to be equally likely — we seek a uniform
distribution. Hence, the distribution function must equal the inverse of
the area of the unit sphere: .

The expected value of a uniformly random unit vector is zero. The
expected value of a randomly generated unit vector  is defined by

,  (13.7)

where  is the distribution function. For a uniform distribution, we have

 (13.8)

so

 (13.9)

Here is a neat trick for evaluating this integral: just apply the divergence the-
orem to convert this area integral into a volume integral. The integrand
becomes the gradient of , which is zero. Thus

The distributions of coordinates for uniformly random unit vectors.
Recall that the distribution density of a uniformly random unit vector is

simply . Now we seek to convert this distribution function
into the individual distribution functions for the two spherical coordinates
defining the unit vector as a point on a unit sphere.

Let represent a patch of area on the unit sphere. Then the probability
that the unit normal will lie within that patch is

 (13.10)
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For numerical implementation, we need to convert the distribution
into a joint distribution for and . The area element in Eq. (13.10) is

. Thus, the probability that a unit normal corresponds to a
point on the unit sphere for which  and  is

 (13.11)

The distribution for is determined by integrating over all
possible values of (i.e., for to ). The function is defined such
that the probability that  will lie in an interval between  and  is

 (13.12)

Similarly, noting that ranges from to , the distribution for is
defined so that the probability that a unit normal corresponds to  is

 (13.13)

The last two results show that

and  (13.14)

we note that

,  (13.15)

which verifies that and are independent random variables. The key
results of this section are the two boxed equations. The distribution is uniform
over the unit sphere, but the distribution for is nonuniform. The function is
a sine, which expresses the fact that lines of constant on the unit sphere are
longer near the equator than near the poles. Hence, a uniformly distributed
population of points on the unit sphere will have more points near the equator
than near the poles.
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Uniformly random unit vectors — formalized implementation
Now we have the distributions and that correspond to a uniform

distribution on the unit sphere, but we need a procedure for sampling a point
on the unit sphere. Pseudo random number generators conventionally provide
a random number uniformly distributed in the interval [0,1), but we need a
sample that is governed by a different nonuniform distribution. This section
summarizes the standard theory for converting a random number on [0,1) to a
sample from any desired nonuniform distribution.

Requisite probability theory. Consider any nonuniform distribution on
the interval [ , ). We seek a mapping function such that will
have the desired distribution whenever has a uniform distribution on
[0,1). We will further require the function to have a correspondence such
that  and . Let’s first define the cumulative distribution:

.  (13.16)

The density function is nonnegative, so the cumulative distribution
function must be a nondecreasing function of , and therefore it has an
inverse except possibly at discrete points. In other words, may permissi-
bly contain discrete bounded jumps.

The distribution function is defined such that the probability that will
lie between  and  is

 (13.17)

Since is uniformly distributed on the interval [0,1), the probability that
 is

 (13.18)

Because we are seeking an invertible mapping function, these last two proba-
bilities must be equal:

 (13.19)

This must hold for any values of and . Let’s take and . Recall
that we have required the point to map to the point Therefore

, and Eq. (13.19) implies

 (13.20)
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Recalling that for all , we note that , and the above
equation becomes

,  (13.21)

or

 (13.22)

In summary, if has a uniform distribution on [0,1), then will have the
distribution  on the interval [a,b).

Application to uniformly random unit normal. Consider the distribution of
Eq. (13.14):

 (13.23)

This distribution is understood to be zero outside the interval . Apply-
ing Eq. (13.16),

 (13.24)

Putting  and solving for  gives

 (13.25)

Thus, applying Eq. (13.22), the mapping function is

 (13.26)

In the numerical implementation, this equation is applied by calling a pseudo
random number generator to obtain a sample number that is uniformly dis-
tributed on the interval [0,1). Eq. (13.26) converts into the sample angle
which is distributed on [0, ) according to Eq. (13.14):

 (13.27)

A similar analysis for  gives

,  (13.28)

where is another (pseudo) random number on the interval [0,1). Once the
sample realizations of and are known, the uniformly random unit normal
is constructed by applying Eq. (13.6):

 (13.29)

These boxed equations are implemented in Listing 6 (Generating a uni-
formly random unit normal) on page A-7.
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Uniformly random unit vectors — faster implementation
The techniques outlined in the preceding section followed classical meth-

ods of probability theory. Specifically, a uniformly random unit vector was gen-
erated by first sampling two random numbers and , each uniformly
distributed on the interval [0,1). Then Eqs. (13.27) through (13.29) were
applied to construct the uniformly random unit vector. Unfortunately, numeri-
cal implementations of that procedure requires calling trigonometric intrinsic
functions, which can be expensive.

In this section we describe a much more straightforward way to generate a
uniformly random unit vector, and this method is generally faster than the
method of the preceding section so long as the computer’s pseudo random
number generator is well-optimized. The idea behind the alternative algo-
rithm is to first generate a (non-unit) vector using a uniform distribution
inside the unit sphere. Then this vector is simply normalized to a unit vector

 by applying the formula

 (13.30)

Generating the vector from a uniformly distributed sample space inside the
unit sphere is algorithmically trivial. First, three pseudo random numbers,

on the interval [0,1) are generated. Then, a scalar
is computed. If , the three random numbers must be discarded and a new
set of three random numbers is generated. This process continues until a set
of three random numbers is generated for which , in which case, the unit
vector  is then given by Eq. (13.30).
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Uniformly random unit vectors —The visualization

Visualizing unit vectors (stereographic projection). A unit vector may
be regarded as a point on the unit sphere. For visualization, points on the unit
sphere must be mapped to the plane (this sheet of paper). Any such mapping
is called a “stereographic projection.” The most common projection is what you
would get if you were to take a photograph of a sphere. The surface of the
sphere maps to the planar surface of the photo. Two photos of the sphere
(showing the front and the rear) would be needed for this type of stereographic
projection. There are numerous alternative ways to define the projection, and
the best choice depends on the application. We will see that an “area preserv-
ing” projection is the most natural choice for visualizing statistical distribu-
tions (or any other quantity defined “per-area” on the sphere).

Before discussing the “sphere-plane” problem, first consider the simpler
circle-line problem of visualizing points on a simple circle defined by the equa-
tion . This circle is a one-dimensional entity existing in two
dimensions. As sketched in Fig. 13.1, we can “snip” the circle at the point

and then “unwrap” or “flatten” it into a line. This is an easy mapping to
visualize because both the circle and the line are Euclidean spaces (both the
circle and the line can be formed by a strip of paper).

n
˜

x2 y2+ R2=

0 1–,( )

Figure 13.1. Length-preserving mapping of a circle to a one-dimensional straight
line. The polar coordinate maps to a linear coordinate , which is just the arc
length. Note that the lower hemisphere maps to a discontinuous region defined by

. The mapping is one-to-one everywhere except that the point maps
to both  and .

θ s
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s=1 s= 1–
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In crystallography, a different kind of stereographic projection (shown in
Fig. 13.2) is commonly used. The disadvantage of this kind of projection is that
arc length is no preserved. Thus, if a classical stereographic projection is used,
a distribution that is uniform on the circle will map to a distribution that is
non-uniform on the line.

Now consider the much harder sphere-plane problem. Mapping the surface
of a sphere to the plane defined by this sheet of paper must involve area distor-
tion since the surface of a sphere is non-Euclidean. In other words, an area
element on the sphere will map to an area element on the plane, but the two
elements will generally have different aspect ratios. Imagine introducing a
tiny hole at the “south pole” of a racquetball. In order to bend the racquetball
into the plane, the area elements that were originally near the south pole
would have to be significantly distorted. Unlike the circle-line mapping of
Fig. 13.1 (which involved zero change in arc length), the sphere-plane map-
ping necessarily involves aspect ratio distortion. However, as we soon show, it
is possible to define a stereographic projection such that the magnitude of the
area is preserved despite the fact that the shape of the area element necessar-
ily changes.

The left side of Fig. 13.3 shows the conventional (photographic) rendering
of the sphere as seen when looking down the axis passing through
the first octant. In such an illustration, the sphere “looks like a sphere,” which
is aesthetically appealing in most situations. However, when illustrating sta-
tistical distributions on a sphere, it is more useful to employ an area-preserv-
ing mapping of the sphere to the two dimensional plane. In this way, a

Figure 13.2. Classical stereographic mapping of a circle to a one-dimensional
straight line. The polar coordinate maps to a linear coordinate , which is de-
fined by where a line from the south pole to the point intersects the equator plane.
Note that the upper semicircle maps to points for which and points on the low-
er semicircle map to points for which .

θ ξ

ξ R<
ξ R>

ξ=R θ 2⁄( )tan

θ
R

1 1 1, ,{ }
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probability function defined on the surface of the sphere will have the same
value when mapped to the 2D plane. With equal-area mapping, a uniform dis-
tribution on the sphere will map to a uniform distribution on the plane — any
clustering in the 2D map will correspond to real clusters on the sphere.

We are ultimately interested in mapping a unit sphere to the plane, but
let’s derive the equations for a sphere of radius , and then later set .
Equating the area elements shown in Fig. 13.3 gives

 (13.31)

For our mapping, we choose , so that Eq. (13.31) becomes an ordi-
nary differential equation,

,  (13.32)

which is easily solved (subject to when ) to give as a function of .
Specifically,

Equal area mapping: If a point on a sphere has spherical
coordinates , then the (unit Jacobian) mapped point
on the 2D disk has polar coordinates

 and  (13.33)

As shown in Fig. 13.4, a sample point on the equator of the sphere
(i.e., a point for which ) will map to a radius . All points in the
upper hemisphere have mapped radial coordinates smaller than . As
seen by the graph in Fig. 13.4, points in the upper hemisphere have a mapped
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ψ

dA=rdrdψ

Figure 13.3. Mapping points on a sphere of radius to a two-dimensional disk.
The 2D disk shown on the right-hand side of the above figure may be regarded as a
distorted view of the sphere as seen looking down the Z-axis.
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radial coordinate that is roughly equal to the spherical arc length . The
equal area mapping is well-defined for the larger values of in the lower
hemisphere (shown in grey in Fig. 13.4). The south pole ( ) maps to the
outer boundary of the disk where . To preserve area, points mapped
from the lower hemisphere require a greater amount of distortion (i.e., is
significantly different from ).

r Rθ
θ

θ=π
r=2R

∆r
R∆θ

X Y

Z

θ ∆θ

y

x

Z

Figure 13.4. Equal area mapping. The upper-left graph of vs. shows that
for points in the upper-hemisphere. The lower-left plot shows a side-

view of the sphere to illustrate how the coordinate maps to the disk radial
coordinate . The upper-right sketch shows a conventional “3D” rendering of
the sphere as seen down the axis. The lower-right plot is the equal
area mapping of the sphere as seen down the Z-axis. The relative sizes of the
plots are shown to correct scale (i.e, the disk has twice the radius of the sphere.
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Equal area mapping applied to uniformly distributed unit vectors. Fig-
ure 13.5(a) shows a plot of uniformly random unit vectors displayed using the
equal area stereographic projection. Because the mapping preserves the rela-
tive magnitudes of area elements, a uniform distribution of points on the
sphere corresponds to a uniform distribution of points on the stereographic
projection disk.

By contrast, Fig. 13.5(b) shows that merely normalizing a vector sampled
uniformly from the unit cube results in a nonuniform distribution of normal-
ized vectors on the sphere — the clustering reflects over-sampling the corners
of the cube.

Figure 13.5. Stereographic projections of random unit vectors. (a) a uniformly random
unit vector distribution found by normalizing a uniform sampling of points inside the
sphere. (b) a non-uniform set of unit vectors resulting from normalizing a uniform sampling
of points inside a unit cube.

(a) (b)
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Uniformly random rotations
In this section, we discuss several methods for generating a uniformly ran-

dom rotation. First we need a definition of uniformity. Let denote an arbi-
trary unit reference vector. The sample vector generated from a random
rotation  is defined

 (13.34)

The rotation tensor is uniformly distributed if and only if is uniformly
distributed for any reference direction . Equivalently [3], a rotation tensor

is uniformly distributed if and only if and have the same dis-
tribution as  for any fixed rotation .

In upcoming sections, we first demonstrate that a uniform rotation can not
be obtained by using a uniform angle and axis of rotation. We will find that
uniform rotations require the distribution for the angle to be biased toward

.
Next we show that uniform Euler angles does not give a uniform rotation

either. To obtain a uniform rotation using Euler angles, the distribution for
the second Euler angle must be biased toward .

We will present the computationally simplest algorithm we’ve found for
generating a uniform rotation. Namely, we generate two uniformly random
unit vectors, use Gram-Schmidt technique to orthonormalize them. A third
unit vector is formed by a right-hand cross product of the orthonormal pair,
and the rotation tensor is constructed by placing the three orthonormalized
vectors into columns of the rotation tensor. The principal unsavory feature of
this algorithm is that we have yet to find a proof that it results in a uniform
rotation. As engineers, however, we have tested this algorithm by generating
tens of thousands of instances rotations with this method, and we have veri-
fied by computing the resulting axis and angle that the distribution does
indeed agree exactly with the known distribution required to obtain a uniform
rotation.

After giving the simple algorithm, we present some other more computa-
tionally awkward — but rigorously proved — algorithms for computing uni-
form rotations.

Finally, we finish up this section by showing how to average a tensor over
all possible uniform orientations.
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Inadequacy of using uniformly random angle and axis. A uniformly
random rotation tensor must have an expected value of so that the rotated
sample vector is equally likely to point in any direction. As discussed by
Shoemake [3], one would think that a uniformly random rotation axis with a
uniformly random rotation angle would also correspond to a uniformly ran-
dom rotation tensor (computed via Eq. 3.14). However, as shown in the
numerical experiment of Fig. 13.6, such a scheme make the rotated sample
vectors cluster about their original orientation, and the rotation is therefore
not uniform. As a matter of fact, the expected value of the rotation turns out to
be , which is not zero as required for a uniform rotation.

To create Fig. 13.6, we generated roughly random rotations by taking
the axis and angle to be uniform. The rotation tensor itself was then con-
structed by applying the Euler-Rodrigues formula of Eq. (3.14):

 (13.35)

The sample points plotted in Fig. 13.6 show the rotated locations ,
, and , respectively as seen using equal area projection of the

sphere when viewed down the base vector (see Eq. 13.33). In all cases, the
rotated location of  tends to cluster about  itself!
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Figure 13.6. Uniform axis and angle do not lead to uniform rotation. Roughly random
rotations were generated using uniform axis and angle. For each sample rotation, the rotat-
ed base vector, , was computed and (regarding it as a point on the unit sphere) mapped
to the plane via equal-area mapping. The white circle demarks the boundary between the
upper and lower hemispheres [See Fig. 13.4]. The above dot plots show that the rotated posi-
tions of the three base vectors tend to cluster about their original orientations.
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To better understand why a uniform rotation must not have a uniform
rotation angle, consider any reference vector . If the rotation axis is uni-
formly distributed, then a significant fraction* of the rotation tensors will
have a rotation axis that forms an angle with of less than . As indi-
cated in Fig. 13.7, these “polar” axes will always produce a sample vector

that lies in the upper hemisphere closest to . These polar axes are
incapable of producing rotated sample points in the lower hemisphere.

Only “equatorial” rotation axes that lie farther than from can possi-
bly generate points in the lower hemisphere. Biasing the rotation angle
toward allows the equatorial axes to produce a compensating number of
sample points in the lower hemisphere. We will later show that the rotation
angle  has a probability density function given by

 for rotation angles ranging from  to .

 for rotation angles ranging from  to .  (13.36)

which is minimum at  and maximum at .

* roughly 21% ( )
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Figure 13.7. Qualitative reason why a uniform rotation must have a non-uniform rota-
tion angle. Suppose that the rotation axis forms an angle smaller than with the ref-
erence vector . Then regardless of the distribution for the rotation angle, the rotated
sample vector will lie in the upper hemisphere closest to . Only axes farther
than away from the reference vector even have the capability of producing sample
points in the lower hemisphere. Consequently, the rotation angle must be biased to-
wards to allow the equatorial axes to generate enough sample points in the lower
hemisphere to balance those in the upper hemisphere.
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Inadequacy of using uniform Euler angles. As mentioned in the preceding
section, a uniformly random rotation tensor must have an expected value of
zero. This is a necessary, but not sufficient condition for uniformity. Suppose
that you generate three uniformly random Euler angles and then
construct the rotation tensor by applying Eq. (7.4),

 (13.37)

We claim that the resulting rotation tensor will not be uniformly random.

A rotation is deemed uniformly random if the distribution for is uni-
form for any unit vector . The sample points plotted in Fig. 13.8 show the
rotated locations , , and corresponding to sample
points generated using uniform Euler angles. In this case, the expected value
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Figure 13.8. Uniform Euler angles produce non-uniform rotations. The top three views
show equal area projections of the rotated vectors , , and respectively
as seen when viewing the sphere down the axis. The bottom three views show the
same rotated base vectors as seen when viewing down the  axis.
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of the rotated vectors (and therefore the expected value of the rotation tensor)
are zero. This is a necessary, but not sufficient condition for uniformity. The
uniform-Euler-angle scheme still produces clustering. The two upper-left plots
in Fig. 13.8 show that the rotated locations of and could visually
appear to be uniform if only the points corresponding to the upper hemisphere
were plotted. Only seemingly minor clustering at the equator would be detect-
able.* The clustering is more clearly visible when viewing the unit sphere
down the axis (lower-left two plots in Fig. 13.8). The rotated vector
tends to cluster about .

Without proof, we claim that the correct distributions for the Euler angles
needed to produce a truly uniform rotation are

 on

 on

 on  (13.38)

Note that the distributions for and are uniform, but the distribution
for  must be biased toward values of .

* This clustering could be easily missed if any other (non-area-preserving) form of stereographic pro-
jection were used.
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An easy algorithm for generating a uniformly random
rotation.

Any rotation tensor can be defined by how it transforms the three labo-
ratory base vectors, . Upon a rigid rotation, this triad becomes

. Then the rotation tensor is , meaning
that the columns of the component matrix are the rotated base vectors:

 (13.39)

To generate a uniformly random rotation tensor , we set to be a uni-
formly random unit vector [constructed via Eqs. (13.27), (13.28), and (13.29)].
We then construct a second uniformly random vector and subtract away its
part in the direction of . In other words, we compute  as follows:

,  where  (13.40)

The third rotated unit vector is given by the right-hand cross product:

 (13.41)

With the three rotated base vectors known, the uniformly random rotation
is given by Eq. (13.39). The numerical implementation of this technique is

given in Listing 7 (Generating a uniformly random rigid rotation.) on
page A-8. Numerical experimentation (below) indicates that the above algo-
rithm does yield a uniformly random rotation, but we still seek a proof.

Numerical verification. To check the above scheme, we wrote a test code to
generate instances of random rotations. Figure 13.9 shows dot plots of the
uniformly random locations of the  vectors.
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Figure 13.9. Uniformly random locations of the three rotated base vectors. Each dot repre-
sents one sample point on the unit sphere, projected to the circle via equal area mapping
(Hence, because the dots appear to be distributed without bias in this picture, then they
would also appear evenly distributed on the unit sphere.)
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Fig. 13.9 shows an equal area projection of the unit sphere, as defined on
page 13.33. This mapping ensures that a uniform distribution on the sphere
will correspond to a uniform distribution of dots in our 2D visualization. Fig-
ure 13.9 may be qualitatively interpreted as views of the sphere looking down
the axis. On all three plots, the direction points to the right, the
direction points up, and the direction points out of the page. The three dot
plots show the rotated vectors , , and , respectively as points on the
unit sphere. The fact that all three dot plots show a uniform distribution of
points heuristically demonstrates that the algorithm does indeed produce a
uniform rotation.

Given that the rotation tensor is generated by the uniform distribution
algorithm on page 105, we should be able to infer the distributions for the
rotation axis and angle. Using the algorithm on page 105 to generate uni-
formly random rotations (as in Fig. 13.9), we called the routine DC2AA (on
page 3). In this way, we “experimentally” measured the distributions for axis
and angle that are shown in Figure 13.10.
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E
˜ 3

e
˜ 1 e

˜ 2 e
˜ 3

104

Figure 13.10. Numerical measurement of rotation axis and angle. The left side
(a) shows a dot plot of the rotation axis. The graph (b) is the cumulative distribu-
tion for the rotation angle. The graph (c) is the cumulative distribution for the
variable .r α αsin–( ) π⁄=
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Figure 13.10 suggests that the rotation
axis is distributed uniformly. The rotation
angle clearly is not uniform. As previously
explained, the rotation angle must be biased
toward values of . We later prove that a
uniform rotation must have a distribution for
the rotation angle given by

 for ,  (13.42)

which is plotted in Fig. 13.11. Note that the
rotation angle is weighted toward , as
expected.

Without loss in generality, the rotation angle may be alternatively taken to
be always positive (as is presumed in the routine DC2AA), in which case the
distribution is

 for  (13.43)

This means that the cumulative distribution function must be given by

 (13.44)

Consequently, the quantity must be uniformly distributed on the
interval from 0 to 1, which is verified in the numerical experiment of
Fig. 13.10. This numerical observation further confirms (without proof) that
the algorithm on page 105 does indeed correspond to a uniform rotation.

Since we know that

 (13.45)

is uniformly distributed on the interval from 0 to 1, then we know we can gen-
erate a representative sampling of the rotation angle by generating a number

that is uniformly random on the interval from 0 to 1, and then the rotation
angle  would then be obtained by solving Eq. (13.45) for .
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Figure 13.11. Distribution for the
angle of rotation.
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An alternative algorithm for generating a uniformly random
rotation.

The above method for generating a uniformly random rotation simply
required applying Gram-Schmidt orthogonalization to two uniformly random
unit vectors, with the third unit vector being given by a cross product. The
resulting right-handed orthogonal set of unit vectors was then assembled to
form columns of a rotation matrix. Algorithmically this is a trivial proce-
dure so long as a function is already available to generate a uniformly random
unit vector. The only (minor) numerical issue is that the second vector must be
re-generated if it is parallel (or nearly parallel) to the first vector.

An alternative algorithm begins in the same manner by generating a uni-
formly random unit vector . If the laboratory component of is the
smallest (or tied for smallest), then we know that the lab base vector will
be linearly independent of (i.e, ). Consequently, we can con-
struct a vector  that is perpendicular to  by the formula

 (13.46)

A third unit vector can be created by

 (13.47)

The two unit vectors and form a plane perpendicular to . If is a ran-
dom number on the interval [0,1), then the vector

 (13.48)

is uniformly random in the plane perpendicular to . The uniformly random
rotation tensor would then be constructed by

, where  (13.49)

We think that the previous algorithm was much simpler, both conceptually
and numerically.
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Shoemake’s algorithm for uniformly random rotations.
Recall that a rotation tensor may always be expressed in terms of a point

 lying on the surface of a sphere in four-dimensional space:

where  (13.50)

The surface area of the 4D unit hypersphere is . Therefore, for a uniform
distribution on the 4D hypersphere, the joint distribution function must be
defined such that

 (13.51)

The symbol denotes the four-dimensional vector . By virtue
of Eq. (5.2), we may introduce 4-dimensional spherical coordinates
such that

 (13.52)

The area element on the 4D unit hypersphere is

 (13.53)

Noting that and range from 0 to and ranges from 0 to , the surface
area of the entire 4D unit hypersphere is . For a uniform distribution on
the 4D hypersphere, the joint distribution function for the spherical coordi-
nates must be defined such that

 (13.54)

Hence, substituting Eqs. (13.51) and (13.53) into Eq. (13.54),

 (13.55)

By symmetry, the joint distribution should be separable. Therefore

 (13.56)

Comparing the above two equations, we conclude

 (13.57)

 (13.58)
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 (13.59)

We have assigned the coefficients so that the integrals of each of the distribu-
tion functions over the full range of their arguments will equal unity, as
required for any distribution function.

Recalling that the rotation angle equals , the density function for the
rotation angle  must be given by

 (13.60)

The above distribution corresponds to

 (13.61)

Without loss in generality it is always possible (by changing the direction
of the rotation axis) to presume that the rotation angle satisfies , in
which case,

, and  (13.62)

In this case, a rotation is described by a unit quaternion lying on a spherical
hemisphere in four dimensional space (so the factor of in Eq. 13.55 would
become and all of the subsequent arguments would go through unchanged
to ultimately lead to Eq. 13.62).

Shoemake’s quaternion algorithm for directly computing a uniform
rotation. Shoemake claims that the following algorithm will result in a uni-
form rotation:

STEP 1.Generate three independent random numbers that are
uniformly distributed between 0 and 1.

STEP 2.Compute two uniformly distributed angles,  and

, and their sines and cosines, .

STEP 3.Compute  and .

STEP 4.Compute the unit quaternion with components

,
, ,  (13.63)

STEP 5.Compute the rotation by applying Eq. (13.50):

where  (13.64)
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Shoemake’s algorithm has been verified by us and is given in the routine
called “RNDC” in Listing 7 (Generating a uniformly random rigid rota-
tion.) on page A-8.

Numerically generating a rotation angle. The function needed to convert
from a pseudo-random number on [0,1) to a rotation angle with distribution of
Eq. (13.43) is determined by applying Eq. (13.16):

 (13.65)

Setting  gives

 (13.66)

If is uniformly distributed on the interval from 0 to 1, then is distributed
according from 0 to π according to Eq. (13.43), and vice versa. Fig. 13.10(b)
verifies the converse statement. Specifically, we generated random rota-
tions, and for each rotation, we used the function on page 3 to compute the
rotation angle . Fig. 13.10(b) shows that the cumulative distribution for

 is linear, indicating that  is uniform.

Unfortunately, Eq. (13.66) cannot be solved to give as an analytical func-
tion of , so we would need to use a numerical root solver to obtain the sample
value of . Listing 6 (Generating a uniformly random unit normal) on
page A-7 could be used to generate a uniformly random rotation axis . The
corresponding rotation tensor can be constructed by using the Euler-Rod-
rigues formula from Eq. (3.14):

 (13.67)

This random rotation will be uniformly distributed in the sense that any refer-
ence point will map to a uniformly distributed sample point . The
above scheme for computing the random rotation is equivalent to — but less
efficient than — to the method described on page 100. The advantage of this
formulation is that the analytical expressions for the density functions are
better suited for computing expected values.

g α( ) pα α′( ) dα′
∞–

α

∫≡ α αsin–
π

---------------------=

g α( ) r=

α αsin– πr=

r α

104

α
r α αsin–( ) π⁄= r

α
r

α
a
˜

R
˜̃

αcos I
˜̃

a
˜
a
˜

–( ) a
˜
a
˜

αsin ε
˜̃̃

a
˜

•–+=

N
˜

R
˜̃

N
˜

•

111



May 9, 2002 3:49 pm
Random RotationsD R A F T

R e c c a  B r a n n o n

b e

The expected value of a uniformly random rotation is zero.

We can write the rotation axis in terms of spherical coordinates as

 (13.68)

If the rotation axis is uniformly distributed, then the distribution functions for
 and  are

 and  (13.69)

Let be any unit vector. We wish to determine whether the distribution for
 is uniform. We can always set up a basis such that . Then

=

+

+  (13.70)

Let’s verify that the distributions of Eqs. (13.42) and (13.69) correspond to a
zero expected value of :

 (13.71)

Performing this integral does indeed show that the distribution has a zero
expected value. This is a necessary (not sufficient*) condition for to be
uniformly distributed on the unit sphere. To prove that is uniformly
distributed, we write

 (13.72)

The distributions of Eqs. (13.42) and (13.69) correspond to a uniform distribu-
tion for the rotation if and only if the coordinates are uniformly
distributed on the unit sphere. Thus

,  (13.73)

which is indeed the distribution implied by Eqs. (13.42) and (13.69).

* Uniform Euler angles will produce a non-uniform distribution of  that nevertheless has a
zero expected value.
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The connection between the isotropic part of a tensor and the
expected value of that tensor over the set of uniform superimposed
rotations. Let be some known tensor and let denote a second tensor that
is generated by superimposing a rotation on the first tensor:

 (13.74)

If  is uniformly random, then (without proof) the expected value of  is

 (13.75)

In other words, the expected value of a tensor over all possible uniform rota-
tions of that tensor is just the isotropic part of that tensor. This result also
holds for higher-order tensors as well. In general, finding the isotropic part of
a tensor is the same as projecting that tensor to the space of isotropic tensors.
For example, a second-order tensor  is isotropic if and only if

or  for all rotations .  (13.76)

Writing this definition in component form eventually reveals that any isotro-
pic tensor (in 3D space) must be simply proportional to the identity tensor .
Therefore, the identity tensor must be a basis for the space of isotropic second-
order tensors referenced to 3D physical space. By “referenced to 3D physical
space” we simply mean that the tensor is expressible in terms of a
matrix. Because all isotropic matrices are expressible as some scalar
times one matrix (the identity matrix), the space of isotropic second-order ten-
sors referenced to 3D physical space must be one-dimensional. A 3D second-
order tensor is projected to its one-dimensional isotropic space by applying the
following projection operation:

for 3D  tensors  (13.77)

Here, the denotes the inner product, which for second-order tensors is
defined . The “hat” over the identity tensor denotes normaliza-
tion of the identity tensor. Specifically:

 (13.78)

Noting that is the same thing as , Eq. (13.77), becomes the traditional
expression for the isotropic part of a 3D second-order tensor:

for 3D  tensors  (13.79)

We have emphasized that this result holds for second-order tensors referenced
to three-dimensional physical space. To see why this is important, consider
two-dimensional space. A 2D second-order tensor is expressible in terms of a

 matrix and the tensor is isotropic if and only if

S
˜̃

S
˜̃

S
˜̃

R
˜̃

T S
˜̃

R
˜̃

••=

R
˜̃

S
˜̃

E S
˜̃

[ ] 1
3
--- trS

˜̃
( )I

˜̃
=

A
˜̃

R
˜̃

T A
˜̃

R
˜̃

•• A
˜̃

= RpiRqj Apq Aij= R
˜̃

I
˜̃

3 3×
3 3×

isoS
˜̃

S
˜̃

*I
˜
ˆ
˜

( )I
˜
ˆ
˜

= 2nd-order

*
A
˜̃

*B
˜̃

AijBij=

I
˜
ˆ
˜

I
˜̃
I
˜̃
*I

˜̃

--------------
I
˜̃
3

-------= =

S
˜̃

*I
˜̃

trS
˜̃

isoS
˜̃

1
3
--- trS

˜̃
( )I

˜̃
= 2nd-order

2 2×
113



May 9, 2002 3:49 pm
Random RotationsD R A F T

R e c c a  B r a n n o n

b e

 for all  (13.80)

Analyzing this definition reveals that the only restrictions that need to be
placed on the components of  are

 and  (13.81)

Therefore, any isotropic tensor in two-dimensions is expressible in the form

 for some scalars  and .  (13.82)

In other words, any isotropic tensor in two-dimensions can always be written
as a linear combination of the 2D identity tensor and the 2D alternating
tensor (defined such that is zero if , +1 if , and if ).
Thus, the space of isotropic tensors in two-dimensions is two dimensional. The
matrix expressions for the two base tensors are

 and  (13.83)

This basis is already orthogonal. The normalized basis is

and  (13.84)

Here, the “*” operator is the 2D inner product, defined by
where repeated indices are summed from 1 to 2.

The projection of a 2D second-order tensor to its isotropic part is
obtained by the projection operation

for 2D  tensors  (13.85)

Expanding this out in component form gives

 for 2D  tensors  (13.86)

This formula is significantly different from the corresponding operation for 3D
tensors!

The techniques described so far for second-order tensors generalize simi-
larly to higher-order tensors. For example, a 3D third-order tensor is isotro-
pic if and only if

 for all rotations .  (13.87)
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It turns out that this condition can be satisfied if and only if is proportional
to the third-order alternating tensor. Therefore, the isotropic part of a third-
order tensor is obtained by the projection operation

,  (13.88)

where “*” is now the third-order inner product ( ) and

 (13.89)

As before, the isotropic part of a third order tensor is identical to the expected
value of that tensor over the set of uniform superimposed rotations. Thus, the
expected value of a 3D third-order tensor over a uniformly random rotation is
given by

 (13.90)

Continuing in this same vein, the expected value of a fourth-order tensor over
uniform rotations is given by the isotropic part of the tensor:

 (13.91)

Again, to compute the isotropic part, we must project the tensor to the space of
isotropic fourth-order tensors. It turns out that an isotropic 3D fourth-order
tensor is always expressible as a linear combination of three isotropic base
tensors having  components given by

, , and  (13.92)

These three tensors form a basis for isotropic 3D fourth-order tensors. How-
ever, the basis is not orthonormalized, as it must be if we wish to define the
projection operation is the usual way. An alternative orthogonal set of base-
tensors for the space of isotropic 4th-order tensors is

 (13.93)
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The tensors in this alternative basis are projectors themselves. When
acts on a second-order tensor, the result is the isotropic part of that tensor.
When acts on a second-order tensor, the result is the symmetric-devia-
toric part of that tensor. When acts on a tensor, the result is the anti-
symmetric part of that tensor.

We note that

 (13.94)

Therefore, the isotropic part of a fourth-order tensor  is obtained by

 (13.95)
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14. SCALARS and INVARIANTS

An invariant is something that remains unchanged upon a change of basis.
The components of a vector are NOT invariant because those components
change when we change the basis. However, the sum of components times
base vectors will remain unchanged upon a change of basis. Thus, in this
sense, vectors such as velocity and electric field are invariant -- these physical
quantities themselves do not change simply because we change our own orien-
tation from which we view them. If the invariant is a single number (such as
temperature or mass density), then it is usually called a scalar. The term sca-
lar invariant is typically used to denote a single number invariant that is
obtained by some operation applied to a directional quantity. For example, the
magnitude of a vector is a scalar invariant of the vector. The trace of a tensor
is a scalar invariant of that tensor. A scalar invariant is a real-valued function
of the components of a vector or tensor that will give the same result regard-
less of what basis is used. For example, the trace of a tensor is typically
defined

 (14.1)

To prove that this is a scalar invariant, we must prove that it gives the same
result regardless of the basis used.

Rebecca: provide this proof

In Chapter 2, we discussed the distinction between

1. leaving physical quantities alone while we reorient ourselves.
2. leaving our orientation fixed, while we reorient the physical plane.

For the first situation, all scalar invariants will be the same before and after
we reorient ourselves. For the second situation, scalar invariants of most of
the physical quantities (e.g., their magnitudes) will remain unchanged, but
some of the scalar invariants might actually change. A good example, is the
trace of the rotation tensor. If we have a rotation tensor and take its trace in
two different orthonormal bases, the result will be the same. However, if we
have a rotation tensor in one physical system, and we create a second physical
system by adding additional rotation to the first one, then the rotation tensor
for the second system will be different from that of the first. In particular, if
both systems share the same rotation axis, then the rotation angle for the sec-
ond system will be larger than the rotation angle for the first system by an
amount equal to our superimposed rotation.

A
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15. The principle of material frame indifference
(PMFI)

What is a “superimposed rotation”?

Suppose that you have worked extremely hard to derive the mapping func-
tion, stretch, rotation, and other kinematic properties for a particular motion
such as uniaxial strain or simple shear. Suppose that you also applied mate-
rial models so that you now know all the applied stresses needed to obtain this
particular deformed state. Now suppose that you were supposed to have
derived the results for a deformation identical to the deformation that you
analyzed, except rotated. Is there any way to easily convert your results, or do
you have to start over from scratch?

The starting deformation for which you have already suffered through
obtaining the kinematic and mechanics solution is called the “fiducial” defor-
mation. In physics, the word “fiducial” means “regarded or employed as a
standard of reference for measurement or calculation.” When analyzing the
fiducial deformation, the standard of reference is the undeformed state. Now
we ask: what if we seek to analyze a new deformation where the reference con-
figuration is still the undeformed reference, but the deformation is now given
by the fiducial deformation subjected to an additional rotation?

“star” deformation:
SIMPLE SHEAR with

“fiducial” deformation:
SIMPLE SHEAR

superimposed rotation Q

2ε

1 where θ tan 1– ε=

with axis parallel to
3-direction
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This additional rotation that is applied to the fiducial deformation is called a
superimposed rotation. As indicated in the above figure, the results from the
fiducial analysis can be immediately modified to permit the superimposed
rotation. Specifically, the “star” deformation that results from superimposing
the rotation on top of the fiducial deformation is immediately seen
to be . Likewise, the rotation tensor must be obtained by applying
the superimposed rotation on top of the fiducial rotation so that
the rotation resulting from these two sequentially applied deformations must
be given by .

Things get confusing when we look at the stretch tensors. Recall that the
right stretch is the stretch applied in the undeformed reference configura-
tion. Now recall that a “superimposed rotation” corresponds to an alteration of
the fiducial physical system by adding additional rotation. The key is that
both the fiducial system and the rotated system have the same initial states.
Thus, for example, if is the initial orientation of some material fiber, then
that initial orientation is the same for both the fiducial system and the one
that includes superimposed rotation.

 (15.1)

The right stretch tensor is similar. Recall that the polar decomposition
can be interpreted physically as a pure stretch followed by a

pure rotation . Since the superimposed rotation is applied after the initial
stretch, we see that the initial stretch must be the same for both the “star”
and “fiducial” systems:

 (15.2)

By contrast, the right stretch tensor in the polar decomposition
is interpreted physically as a stretch that takes place after the rotation is
applied. For the two systems, we have

 (15.3)

and

 (15.4)

Recalling that and , we can rewrite
Eq. (15.3) as

 (15.5)

Thus putting Eq. (15.4) into (15.5) and solving for  gives

 (15.6)
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Thus, the right stretch tensor transforms under a superimposed rigid rotation
in a manner that looks quite similar to the component transformation formula
associated with a basis change (see, for example, Eq. 1.32). The fact that some
tensors transform in a manner like a basis transform while others don’t is a
key feature that distinguishes superimposed rotation from simple reorienta-
tion of the observer. Some books speak of the principle of material frame indif-
ference by speaking of an orthogonal change of frame. It’s important to realize
that the change of frame is applied after the physical state has been esta-
bished. The way to think about this viewpoint is that two observers are ini-
tially identically oriented, but they adopt different orientations as the
physical system undergoes its process. Then both observers record identical
component matrices for all of the initial vectors and tensors, while they
observe relatively rotated components for the current — or spatial — vectors
and tensors.

“Reference” and “Objective/spatial” tensors

A reference tensor (including zeroth and first order tensors — i.e., scalars
and vectors) is one that is unchanged by a superimposed rotation. Examples
include, as discussed above, the initial orientation of a vector, the right stretch
tensor, etc. That is,

If , then the scalar  is a reference scalar  (15.7)

If , then the vector  is a reference vector  (15.8)

If , then the tensor  is a reference tensor  (15.9)

and so on.

An objective or spatial tensor is one whose transformation under a super-
imposed rotation has the same form as the transformation under an orthogo-
nal basis rotation.

If , then the scalar  is a spatial (objective) scalar  (15.10)

If , then the vector  is a spatial (objective) vector  (15.11)

If , then the tensor  is a spatial (objective) tensor  (15.12)

First note that, if a scalar is objective, then it is also a reference scalar. The
vast majority of scalars are objective, but (as discussed below) some are not.

Note that Eq. (15.12) can be written in component form as

If , then the tensor  is a spatial (objective) tensor  (15.13)
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For higher-order tensors, it’s easiest to define the objectivity (spatial ten-
sor) property using a notation like this. Consider, for example, a third order
tensor :

If , then the tensor  is a spatial (objective) tensor.  (15.14)

An alternative way to think about an objective tensor is that the “star” tensor
is the same as the “fiducial” tensor if all of the base vectors used in the basis
expansion of the tensor are changed from  to . In other words,

If , then  is a spatial (objective) tensor  (15.15)

This result suggests that it might be useful to employ two different orthonor-
mal bases when working physical problems.

Reference tensors are most naturally expressed in terms of the  basis  (15.16)

Objective/spatial tensors are most naturally expressed in terms of a basis  (15.17)

True or False: scalars are unaffected by a superimposed
rigid rotation.
The answer is “false.” Understanding the reason for this answer is an impor-
tant step towards understanding why the principle of material frame indiffer-
ence (PMFI) is a concept distinct from the rules governing orthogonal
coordinate transformations. As discussed in Section 14, a scalar is something
whose value is unchanged upon a basis rotation. Most physical scalars are
objective. However, not all scalars will be unchanged upon a superimposed
rotation. A good counterexample is the trace of the rotation tensor discussed
in Section 14 -- that quantity is a scalar invariant, but it is neither a reference
nor objective scalar.

As a rule of thumb, reference tensors are quantities whose definition is
closely coupled to the initial state (which, recall, is the same for both the “fidu-
cial” and “star” states). Objective/spatial tensors are quantities whose defini-
tion is most physically meaningful in the current state. Some quantities, such
as the deformation gradient tensor or the trace of the rotation, are neither ref-
erence nor spatial — these entities typically carry information that couples
the initial state to the current state.

The natural basis for reference tensors is the basis, while the natural
basis for spatial tensors is the basis. For tensors that are neither refer-
ence nor spatial, the natural basis is often a “two-point” or mixed basis. The
natural basis for the deformation gradient is , whereas the natural basis
for the transpose of the deformation gradient is . The concept of a natural
basis is useful for double-checking analytical work because any operation that
involves the dot product of with is so rare that it serves as a “red flag”
that an error might exist. If, for example, your analysis results in the appear-
ance of , you should be worried because, in terms of the natural basis,
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 (15.18)

Expanding this out involves the dot product , which involves base vec-
tors from two different systems. This suggests that an error must have
creeped into your work. You might have intended to write, say, or

, both of which involve dot products of the same class of base vector.
These are subtle concepts that a practicing engineer can get by without ever
knowing — they just serve as another item in one’s bag of tricks that is some-
times useful for spotting errors.

Prelude to PMFI: A philosophical diversion
The study of physics often involves intuitively simple concepts stated in a

very obtuse — but ultimately more useful — mathematical form. Switching
from imprecise English (or other language) to mathematics is essential for any
advanced analysis. Unfortunately, however, the original childishly simple
obviousness of the original concept often becomes lost in the process. Consider,
for example, the mathematically precise statement of conservation of mass:

,  (15.19)

where is the mass density, is the divergence operator, and is the
material velocity. It’s easy to forget that this stilted equation is just an obtuse
way of expressing the intuitive concept that “What comes in must go out —
or stay there.”

Intuitively simple concepts often become quite obtuse when cast in mathe-
matical form. The mathematical form is nonetheless essential to ensure
adherence to the principle. Material frame indifference is no exception. Its
precise statement is somewhat daunting, but its basic meaning is really quite
simple. In the subsequent sections, we are going to discuss several motiva-
tional examples to introduce the basic idea of PMFI.
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PMFI: a sloppy introduction
The principle of material frame indifference imposes a physically intuitive

constraint on material constitutive laws. If you apply the constitutive law for
some particular deformation, which we shall call the “fiducial” deformation,
then you get a certain prediction for the stress tensor . Suppose that you
compute the prediction of the constitutive law for a different “starred” defor-
mation that is identical to the fiducial deformation except that it additionally
has rigid rotation and translation. Intuitively, you would expect that the
stress for the starred deformation should be exactly the same as the stress for
the fiducial deformation except rotated along with the material. The principle
of material frame indifference (PMFI) is the obtuse and often confusing math-
ematical expression of this intuitively simple physical concept. We will later
see that models violating PMFI can usually be corrected by simply changing
the model’s independent variables.
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Translational frame invariance

In this section, we are going to show a simple and obviously flawed model
that is not frame indifferent. The idea here is to pretend that you have pro-
grammed your model into a dumb computer that is capable of only applying
the model literally — the computer does not assess validity of the model. Any
rational human being would have no problem discerning the intended mean-
ing of the flawed model. The point of this section is that the computer (which
always applies the model exactly as you program it) will get the wrong result.

Before looking at material constitutive equations, lets consider a model for
a linear spring: The force in the spring equals a spring constant times
change in length  of spring.

 (15.20)

Suppose that we wish to generalize this model so that it applies in vector
form. Then we might introduce the following variables:

 = current location of the tip of the spring.
 = original (unstressed) location of the tip of the spring.  (15.21)

An undergraduate physics student might be tempted to propose

← (violates PMFI)  (15.22)

This model violates invariance under rigid translation because in its literal
sense, it does not account for the possibility that the tail of the spring might
move. If we were to implement Eq. (15.22) on a dumb computer, the resulting
program would wrongly predict a larger spring force for the star deformation
in Fig. 15.1 than for the fiducial deformation, even though both deformations
involve the same amount of spring stretch.

f k
δ

f kδ=
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˜ o

f
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k x
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x
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x
˜ o

x
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x
˜ o

∗

x
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∗

undeformed

Fiducial deformation

undeformed

Starred deformation
Figure 15.1. Two deformations involving the same spring stretch for which the faulty
model wrongly predicts different spring forces. On the left is a deformation in which the
tail of the spring does not move. On the right is a deformation that is identical to the fidu-
cial deformation except that the spring is also rigidly translated. The model of Eq. (15.22)
predicts the wrong answer because it does not include the position of the tail
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As human beings, we know intuitively that the deformation on the right
side of Fig. 15.1 should involve the same spring force since it involves the
same amount of spring elongation. However, a computer program using
Eq. (15.1) has no intuition — it just gives us the wrong answer.* For (Galilean)
invariance under translation, our spring model must have the property that it
will predict exactly the same force whenever we rigidly translate the spring in
space. This is an intuitively simple concept. Its mathematical expression,
however, is less obvious. The idea here is that we compare two deformations:

Fiducial deformation: stretch the spring by some known amount.
Starred deformation: stretch the spring by the same amount and also
translate it by an amount .

Both scenarios involve the same starting location, so is the same in both
cases. Let denote the deformed location of the tip for the fiducial deforma-
tion. Let denote the deformed location of the tip for the starred deforma-
tion. Denoting the amount of translation by , we note that the location of the
spring tip for the starred deformation is given by

 (15.23)

Both scenarios involve the same starting configuration, so for the starred
deformation is the same as for the fiducial deformation. It is common prac-
tice to denote all variables used in the starred deformation variable by an
asterisk. Hence,

 (15.24)

The principle of invariance under translation says that both scenarios are
supposed to involve the same spring force. Thus, we require that our spring
model should predict to be the same for both the starred and fiducial defor-
mations:

 (15.25)

We demand that this condition should hold no matter how much translation
we use. To demonstrate that Eq. (15.22) violates translational frame invari-
ance, we simply apply it in both scenarios:

For the fiducial deformation,  (15.26)

For starred deformation, the spring model predicts

 (15.27)

To check whether or not this prediction for agrees with the desired result
given in Eq. (15.25), we substitute Eqs. (15.23) and (15.24) into Eq. (15.27) to
obtain

* a trillion times per second!
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 (15.28)

We want our spring model to give the correct answer for both the fiducial and
starred deformations. However, the only way that will equal
is if the translation is zero. Thus, our undergraduate spring model of
Eq. (15.22) should be applied only under the restriction of zero spring transla-
tion. For general motions, it violates the principle of translational frame indif-
ference.

The above discussion captures the flavor of invariance derivations. We
have selected a simple and obviously wrong spring equation to permit you to
better understand the precise (but stilted and often non-intuitive) proof that
the model is wrong. Flaws in real-life models are not always so intuitively
apparent, and the abstract mathematical analysis might be the only sensible
way to verify translational frame indifference.

To summarize, analysis of translational frame indifference goes as follows:

• Use kinematics and/or careful application of definitions to deduce how the
independent variables in the translated “starred” deformation must be
related to those of the fiducial deformation. For our spring model, for
example, we asserted that . Keep in mind: superimposing
translation affects only the deformed state — we do not impose a
translation on the initial state. That’s why we stated that  to
reflect the fact that both deformations started from the same initial
condition. The fact that the fiducial and starred deformations have the
same initial state is the key difference that distinguishes frame
invariance from coordinate invariance.*  If the model is written in rate
form, then the kinematical condition that relates the starred velocity to
the fiducial velocity would be .

• Apply the principle of material frame indifference to decide how the
dependent variables for the starred deformation should be related to those
of the fiducial deformation. For our spring model, we asserted the physical
condition that the spring force should be unchanged by rigid translation
( ).

• Apply the material constitutive model for both the fiducial and starred
deformations. The model is translationally invariant if consistency of the
fiducial and starred model predictions requires no restrictions on the
frame translation vector . For our undergraduate spring model, we

* The principle of translational coordinate invariance says that we should be able to translate the ori-
gin to a new location without affecting the prediction of the model. If the origin were moved by an
amount , then,  would become  and  would become . Conse-
quently, , thereby demonstrating that the model would give the same answer for
spring force even if the origin were to be moved. Thus, our spring model does satisfy translational
coordinate invariance even though it violates translational frame invariance.
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proved that the fiducial and starred spring forces were consistent only if
, which therefore proved that the model was not translationally frame

invariant. To be translationally invariant, the fiducial force needed to be
equal to the starred force regardless of the value of .

Again, keep in mind that we knew intuitively that something was wrong with
Eq. (15.22) just by considering Fig. 15.1. The hard part was proving it mathe-
matically! Frame indifference analysis is really all about enforcing what we
intuitively know should be true. The problem is that our dumb computers only
do what we tell them to do — they lack intuition, so we must be very careful
when developing our numerical models.
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Rotational invariance.

To satisfy translation invariance, a masters-level student might propose a
new improved version of Eq. (15.22). Namely,

← better, but still bad  (15.29)

Here, is the vector pointing from the tail of the spring to the tip of the
spring. Since this vector represents the difference between two points on the
spring, it will be invariant under a superimposed translation. Thus, under
translation, . We again have the restriction that and . If
Eq. (15.29) is assumed true, then the equation is also true
without having to impose any assumptions about the translation vector .
Consequently, Eq. (15.29) is translationally frame invariant.

Unfortunately, the spring model of Eq. (15.29) still has problems because it
is not rotationally frame invariant. To understand the issue, consider Fig. 15.2
where we show the same amount of spring elongation, but a different amount
of spring rotation. For convenience, we artificially selected a rotation that
would make the vector point straight down. If we were to blindly pro-
gram Eq. (15.29) into a dumb computer, then it would predict that the force in
the spring is oriented vertically. As human beings, we know intuitively that
this is an absurd result — the force in the spring should point along the axis of
the spring for both the fiducial and starred deformations.
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Figure 15.2. Illustration of a rotationally faulty model. On the left is a deformation in
which the orientation of the spring remains fixed. On the right is a deformation in which
the spring experiences the same elongation but it is also rotated. To be rotationally con-
sistent with the fiducial deformation, the starred force vector needs to be the same
as the fiducial except rotated with the spring. For the picture on the right, we con-
trived the amount of rotation so that the vector would point straight down. That
means our faulty masters-level spring equation predicts a spring force that is vertical
instead of lined up with the spring the way it should be!
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Following the same sort of logic as we used for translational invariance, we
will now prove mathematically that Eq. (15.29) is not rotationally invariant.
The idea is to again to check whether or not the predictions of the model for
the starred rotated deformation are physically consistent with the prediction
in the fiducial deformation. Again consider two scenarios:

fiducial deformation: stretch the spring without rotation

starred deformation: apply the same deformation as the fiducial
deformation, but also rigidly rotate the
spring.

Both scenarios involve the same starting length vector. Thus,

 (15.30)

Let denote the deformed length vector for the fiducial deformation. Let
denote the deformed length vector for the starred deformation. Let

denote the rotation tensor. Then simple kinematics reveals that

 (15.31)

The principle of invariance under rotation imposes the intuitively “obvious”
requirement that the spring force predicted for the starred deformation
should be the same as the fiducial force except rotated with the material.
Stated differently, the force in the spring should form the same angle relative
to the spring for both scenarios. Some authors would state this property by
saying that, under rigid rotation, the force “co-rotates” with the spring. Math-
ematically, this requirement is expressed by asserting that

 (15.32)

To demonstrate that Eq. (15.29) violates rotational frame invariance, we will
apply it in both scenarios and demonstrate that . The
spring model says that  and therefore Eq. (15.32) becomes

 (15.33)

For the starred (rotated) deformation, the spring model predicts
. Hence, substituting Eqs. (15.30) and (15.31) gives

For the starred deformation,  (15.34)

To satisfy rotational frame indifference, must be the same as
. However, subtracting Eqs. (15.33) from (15.34) gives

 (15.35)
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The only way that the above result will equal zero (as required for rotational
frame invariance) is if the rotation tensor equals the identity tensor. In other
words, there must be no rotation. We therefore conclude that the our masters-
level spring model violates rotational frame invariance. We desire our spring
model to give the correct answer for both the fiducial and the starred scenar-
ios, so we now look into a Ph.D. modification of the spring model.

Here’s a model that satisfies the principle of material frame
invariance.

To satisfy both translational and rotational invariance, a Ph.D-level stu-
dent might propose a more improved version of Eq. (15.29). Namely,

,

where , and  (15.36)

To prove that this equation is indeed both translationally and rotationally
invariant, we again consider how the prediction would change if we were to
consider a “starred” deformation that superimposes a rigid translation and
rotation on the deforming material. Keep in mind that the only difference
between the fiducial and starred deformations is a rigid motion. Therefore,
lengths are the same in both cases. Hence, . Of course, as before,
the initial state is the same for both cases, so . Consequently,

.  (15.37)

Under a rigid motion, the “starred” length vector is given by .
Thus, the “starred” unit vector is related to the un-starred unit vector by a
simple rotation

 (15.38)

As before, we require that the force for the starred deformation should be
related to the fiducial force by

 (15.39)

If we apply the improved spring model of Eq. (15.36) to the starred defor-
mation, we obtain

 (15.40)

In light of Eqs. (15.37) and (15.38), we conclude that this new spring model is
frame indifferent because we finally have consistent results. Namely,

 (15.41)
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Is frame indifference all you need to make a model good for
large deformations?

A point of caution is in order here. For some reason, many people think
that satisfaction of frame indifference guarantees good performance of a
model under large deformations. This is false. Frame indifference merely
demands that the predictions for the fiducial and starred deformations should
be consistent with each other. There is no guarantee that the fiducial predic-
tion is any good in the first place!

A practicing engineer might well reject our Ph.D student’s beautifully
frame indifferent spring model if the spring being modelled is actually nonlin-
ear. Frame indifferent models are everywhere, but ones that accurately
describe a material’s nonlinear large distortion response are rare indeed.

The principle of material frame indifference in general
When you want to test a material constitutive equation for frame indiffer-

ence, you must first note what variables are involved in the constitutive equa-
tion. You must use physical reasoning to assert how those quantities are
supposed to change upon a superimposed rigid motion. Then you must demon-
strate that the constitutive model gives consistent results with and without
superimposed motion. This self-consistency must be achieved without impos-
ing any conditions on the superimposed rigid motion or on the rate of the rigid
motion. We have illustrated these concepts in the simple setting of a spring
model where the nature of the problems was quite obvious. When getting into
real material constitutive laws, the issues are not so obvious and one must
then rely exclusively on the mathematics.

Objectivity transformation tables. By now, you have likely realized that
testing for frame indifference requires that you know kinematics well enough
to determine how a variable will change from its fiducial value to its starred
value in response to a superimposed rigid motion. Such changes are called
objectivity transformations, and it is a good idea for you to simply maintain
an ongoing table of such relationships.

For example, under general rotation and translation, the position vector
in the starred configuration is related to the position vector in the fidu-

cial configuration by

,  (15.42)

where  is the rigid rotation and  is the rigid translation.

When we discussed the spring example, recall that the initial spring vector
was the same for both the starred and fiducial deformations. They both

started from the same initial configuration — only the starred deformation
suffered additional rotation and translation. This is one example of the fact
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that some vectors will not change at all under rigid motion. For continuous
motions, the initial position vector is the same for both the fiducial and
starred deformations. Thus, since both the fiducial and starred deformations
begin from the same initial configuration, we conclude that

 (15.43)

The deformation gradient for the fiducial deformation is defined as usual by

 (15.44)

Likewise, the deformation gradient for the starred deformation is defined by

 (15.45)

Applying the chain rule,

 (15.46)

From Eq. (15.42), we know that

,  (15.47)

where we have used the fact that and are rigid rotation and translation
vectors and they consequently are the same throughout space — they do not
vary with .

From Eq. (15.43), we know that

 (15.48)

Thus, substituting Eqs. (15.44), (15.47) and (15.48) into Eq. (15.46) gives

 (15.49)

This unsurprising result says that the starred deformation gradient is
obtained by operating on the fiducial deformation gradient by the rotation ten-
sor.

The right Cauchy-Green tensor is defined for the fiducial deformation by

 (15.50)

The right Cauchy-Green tensor for the starred deformation is

 (15.51)
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Substituting Eq. (15.49) into (15.51) and recalling that is orthogonal
reveals that

 (15.52)

The fiducial and starred deformations have the same stretches before rotation
is applied. Hence, it should not be surprising that the fiducial and starred
deformations have the same right Cauchy-Green tensors because this tensor
is a measure of the material stretching before any material rotation is applied.
By contrast, consider the left Cauchy-Green tensor:

 (15.53)

For the starred deformation, we have

 (15.54)

Substituting Eq. (15.49) into (15.54) reveals that

 (15.55)

The boxed equations within this section required a fair amount of effort to
derive, and these results are often needed when performing frame indifference
calculations. Therefore, it is highly recommended that you create and continu-
ally expand your own table of so-called “objectivity transformations” that
show how a quantity in the starred configuration is related to the fiducial
deformation. One such table is available in the nomenclature list at

http://www.me.unm.edu/~rmbrann/gobag.html.

A key lesson here is that the starred quantities change in different ways
depending on their physical definitions. Some tensors don’t change at all,
while others “co-rotate” with the superimposed rotation. The fact that tensors
change in different ways depending on their physical definitions is a key fea-
ture that distinguishes objectivity transformations from ordinary basis trans-
formations. For a basis transformation, tensors themselves do not change, and
their matrix of tensor components will transform in exactly the same way
regardless of the physical meaning of the tensor. For an objectivity transfor-
mation, the physical meaning of the tensor is important.

Reference and spatial tensors. Referring to Eq. (15.52), note that the right
stretch tensor is the same in both the fiducial and starred configurations:

 (15.56)

by contrast, referring to Eq. (15.55), the left stretch changes according to

 (15.57)
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Any tensor such as or that is the same for both the fiducial and starred
configurations is referred to as a reference tensor. Any tensor that trans-
forms according to

 (15.58)

is called a spatial tensor. The term “objective tensor” is also used. Thus, for
example, and are spatial tensors. If are the components of the fidu-
cial tensor with respect to the laboratory basis , then the
starred tensor has the same components except referenced to a rotated
basis, . In this sense, a spatial tensor is one that “co-rotates”
under a superimposed rotation. By contrast, a reference tensor remains
unchanged.

Many tensors are neither reference nor spatial tensors. For example, the
transformation result of Eq. (15.49) does not match the structure of either
Eq. (15.56) or (15.57). Consequently, the deformation gradient is neither spa-
tial nor referential.

A vector (such as the initial position vector ) that is unaffected by super-
imposed rotation is called a reference vector. On the other hand, a vector is
spatial if it transforms according to

 (15.59)

Consider a vector  that connects two material points:

 (15.60)

In the starred configuration, this material vector becomes

 (15.61)

or, using Eq. (15.42),

 (15.62)

Using Eq. (15.60), we conclude that

 (15.63)

Thus, this sort of material fiber is a spatial vector — it co-rotates with the
material.

Consider displacement , which is defined by

 (15.64)

For the starred deformation,

 (15.65)
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Thus, displacement is neither a reference vector nor a spatial vector. Again, we
want to emphasize that relationships like the boxed equations above are
tedious to derive. You should add objectivity transformations to your own per-
sonal collection for future use during frame indifference analyses.

You can also define reference and spatial scalars. Many researchers mis-
takenly jump to the conclusion that scalars are unaffected by superimposed
rotations. This is false, as we now will show. Consider the polar rotation tensor

 (15.66)

In the starred configuration,

 (15.67)

Using Eqs. (15.49) and (15.56),

.  (15.68)

Thus, substituting Eq. (15.66) gives

 (15.69)

which shows that is neither spatial nor objective. Now let’s consider the
rotation angle associated with . Based on the Euler-Rodrigues formula,
the cosine of the rotation angle is given by

 (15.70)

Under superimposed rotation,

 (15.71)

From this, we conclude that

 (15.72)

This proves that not all scalars are unaffected by superimposed rigid rotation.
As with tensors and vectors, the physical definition of the scalar must be con-
sidered in deciding objectivity.

Stress and strain measures. The most common choice for a stress measure
is the Cauchy stress , which is defined such that the force on an area ele-
ment is given by . In this definition, the normal to the patch of
area is a spatial vector, so it satisfies

 (15.73)
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The principle of material frame indifference says that, upon a rigid rotation,
the traction (force per unit area) should co-rotate with the material. Conse-
quently, the Cauchy stress must be a spatial tensor:

 (15.74)

The Cauchy stress measure is not the only stress measure used in the litera-
ture. Many researchers employ the second Piola-Kirchhoff stress (PK2) ten-
sor, defined by

,  (15.75)

where  is the Jacobian of the deformation,

 (15.76)

Upon a superimposed rotation,

 (15.77)

Also

 (15.78)

Substituting the objectivity transformation relations for , and reveals
that

 (15.79)

Thus, the second Piola Kirchhoff (PK2) stress is a reference stress tensor — it is
unaffected by a superimposed rigid motion.

The Cauchy stress is said to be “conjugate” to the symmetric part of the
velocity gradient  because the stress power per unit mass is given by

 (15.80)

The symmetric part of the velocity gradient can be shown to be a spatial ten-
sor; i.e.,

 (15.81)

The mass density is a reference scalar (i.e., it is unchanged by superimposed
rotation). Note that this does not mean that the mass density is equal to its
initial value — it only means that it is unaffected by superimposed rigid
rotation. is itself a reference scalar. By using the definition of the second
Piola-Kirchhoff (PK2) stress, it can be shown that there exists a strain that
is conjugate to the PK2 stress in the sense that

 (15.82)
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Specifically, this special strain — called the Lagrange strain — is defined

 (15.83)

Recalling that is a reference tensor, we immediately see that is also a ref-
erence tensor. That is,

 (15.84)

Many researchers elect to phrase their constitutive equations in terms of the
Lagrange strain and the PK2 stress because they are both reference tensors,
and the principle of material frame indifference is therefore automatically sat-
isfied. The principle of material frame indifference has its most dramatic
impact on constitutive models that use spatial tensors.

Example: elasticity. In its most general sense, a material is usually said to
be elastic if the stress in the material depends only on the deformation of the
material. This definition is actually a sloppy because it might violates frame
indifference when taken literally. Specifically, let denote Cauchy stress and
let denote the deformation gradient tensor. According to the above sloppy
definition of elasticity, the constitutive law may be written

 (15.85)

where is the constitutive function. Physically, we know that application of a
superimposed rigid motion should change the stress to

 (15.86)

Furthermore, when we have a deformation and we apply a superimposed
rotation , then the new deformation gradient is

 (15.87)

When applied under a superimposed rigid motion, the constitutive law of
Eq. (15.85) gives

 (15.88)

or

 (15.89)

The principle of material frame indifference demands that both Eq. (15.85)
and (15.89) must be true. Thus, we may substitute Eq. (15.85) into (15.89) to
obtain

,

which must hold for all rotations  and deformations  (15.90)

ε
˜̃

1
2
--- C

˜̃
I
˜̃

–( )=

C
˜̃

ε
˜̃

ε
˜̃
∗ ε

˜̃
=

σ
˜̃F

˜̃

σ
˜̃

f F
˜̃

( )=

f

σ
˜̃
∗ Q

˜̃
σ
˜̃

Q
˜̃

T••=

F
˜̃Q

˜̃
F
˜̃

∗ Q
˜̃

F
˜̃

•=

σ
˜̃
∗ f F

˜̃
∗( )=

Q
˜̃

σ
˜̃

Q
˜̃

T•• f Q
˜̃

F
˜̃

•( )=

Q
˜̃

f F
˜̃

( ) Q
˜̃

T•• f Q
˜̃

F
˜̃

•( )=

Q
˜̃

F
˜̃

137



May 9, 2002 3:49 pm
The principle of material frame indifference (PMFI)D R A F T

R e c c a  B r a n n o n

b e

The above equation represents a restriction on admissible forms for the func-
tion . Any proposed elastic constitutive equation must satisfy the above
restriction.

Consider the following special case: many authors assume that stress can
be written as a function of spatial strain:

 (15.91)

The term “spatial” is used to describe any tensor that transforms according to

 (15.92)

upon a superimposed rigid rotation . Referring to Eq. (15.86), we note that
Cauchy stress is a spatial tensor. Eq. (15.87) shows that the deformation gra-
dient is not a spatial tensor. If our strain measure is spatial, then we know
that

 (15.93)

Eq. (15.91) satisfies frame indifference only if

 (15.94)

In other words,

 (15.95)

To be consistent with Eq. (15.91), this implies that

which must hold for all rotations  and spatial strains  (15.96)

The above equation imposes a very restrictive admissibility constraint on the
constitutive function . In particular, the above restriction can be satisfied
only if the material is isotropic! To see why this is so, let’s suppose to the con-
trary that the material is anisotropic such that it is very stiff in the 1-direction
and very compliant in the 2-direction. Now consider a fiducial strain that is
uniaxial in the 1-direction. This will produce a very large stress in the 1-direc-
tion because the material is stiff in that direction. If we were to apply the
same magnitude of strain in the 2-direction, we would not expect as large of a
stress. However, the constraint of Eq. (15.96) does not permit this desired
behavior. If represents a rotation of 90 degrees about the 3-direction, then

is the same as our fiducial strain except that it is now applied in
the 2-direction. Note that represents the stress for our fiducial strain and

represents the stress for our rotated strain. Equation (15.96)
says that the stress for the rotated strain should be identical to the stress for
the fiducial strain except that it must be rotated by 90 degrees. Consequently,
Eq. (15.96) does not permit the magnitude of stress to be smaller for strains
pointing in the 2-direction.
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If your material is isotropic, then PMFI permits you to use a constitutive
model of the form in Eq. (15.91). However, if you are modelling an anisotropic
material, then PMFI tells you that your constitutive equation cannot be
expressed in the form in Eq. (15.91). How do we use this information? The
proper conclusion is that, for anisotropic media, a spatial constitutive equa-
tion must depend on more than just the spatial strain. If, for example, your
material is transversely isotropic, then PMFI will permit you to propose a con-
stitutive model of the form

,  (15.97)

where is the axis of transverse symmetry. By including the material direc-
tion as an independent variable in the constitutive model, you will be able to
assert that , which in turn permits the anisotropic stiffnesses to
rotate with the material upon superimposed deformation.

PMFI in rate forms of the constitutive equations
For the purpose of illustration, let’s revisit a constitutive law of the follow-

ing form

 (15.98)

Taking the time rate of both sides gives

, where  (15.99)

For satisfying PMFI, we have already asserted that the material must be iso-
tropic. Hence, the stiffness must be isotropic. As long as this is true, the
constitutive equation defined by Eq. (15.99) will satisfy frame indifference
because it was derived by differentiating a frame indifferent equation.

For elasticity problems, it is common (though we believe inadvisable) to
employ a similar-looking but fundamentally different constitutive equation

 (15.100)

where the strain rate has been replaced by the stretching tensor , which is
just the symmetric part of the velocity gradient:

, where  (15.101)

We will show that Eq. (15.100) violates PMFI, so it is common practice to pro-
pose modifying it as follows:

,  (15.102)
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where denotes a special “co-rotational” rate that effectively eliminates the
part of the stress rate caused by rotation as discussed below

A fundamental theorem from continuum mechanics states that the velocity
gradient tensor  is related to the deformation gradient tensor  by

 (15.103)

Under a superimposed rotation , recall that

 (15.104)

The starred velocity gradient is

 (15.105)

For convenience, we introduce an angular rate of rotation tensor associated
with the  rate of superimposed rotation. Specifically we define

 (15.106)

Because  is a rotation, the tensor  is skew-symmetric:

 (15.107)

Using this tensor, we find that the starred velocity gradient of Eq. (15.105)
simplifies to

 (15.108)

The presence of means that the velocity gradient is not a spatial tensor.
However, since is skew-symmetric, we note that the stretching tensor

 is a spatial tensor:

 (15.109)

Recall that the Cauchy stress is a spatial tensor:

 (15.110)

We are now going to prove that this implies that the rate of the Cauchy stress
is not a spatial tensor. The time rate of the starred stress is found by differen-
tiating Eq. (15.110) to give

 (15.111)

With the substitution , this becomes

 (15.112)
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Using Eq. (15.111) and recalling that the angular rotation tensor is skew-sym-
metric, we find that the starred stress rate is related to the fiducial stress rate
in the following complicated way:

 (15.113)

Note that

 (15.114)

Therefore the Cauchy stress rate is not spatial. This means that the proposed
constitutive equation in Eq. (15.100) violates PMFI.

Co-rotational rates (convected, Jaumann, Polar)
To rectify the problem with Eq. (15.100), it is conventional to propose an

alternative constitutive equation of the form

,  (15.115)

where  denotes a so-called “co-rotational” rate defined by

 (15.116)

In this equation, the tensor may be selected to be any convenient physical
quantity so long as it transforms under superimposed rotation so that

 (15.117)

Referring to Eq. (15.108), one possible choice for  is

← this corresponds to the “convected” rate  (15.118)

This is not the only choice. We could alternatively take the co-rotational tensor
to be the vorticity tensor:

← this corresponds to the “Jaumann” rate  (15.119)

We could select the co-rotational tensor to equal the polar spin

← this corresponds to the “Polar” rate  (15.120)

Regardless of the choice for the co-rotational tensor, so long as Eq. (15.116)
holds, you can demonstrate that

 (15.121)

In other words, the co-rotational rate is a spatial tensor. Consequently,
Eq. (15.115) satisfies PMFI so long as the constitutive function  is isotropic.
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Keep in mind that the choice for the co-rotation tensor (i.e., convected, Jau-
mann, polar, or something else) is not unique. As long as your choice satisfies
Eq. (15.117), then your constitutive model will be frame invariant. However,
other physical arguments besides invariance may lead you to prefer one co-
rotation tensor over another. For example, Dienes [8] demonstrated quite ele-
gantly that the Jaumann rate predicts physically anomalous oscillatory stress
when used with constant isotropic elastic moduli in simple shear, so he recom-
mended the use of the Polar rate. However, Brannon [11] demonstrated that
the polar rate is incapable of adequately describing the distortion of directions
of material anisotropy, so she cautiously recommended the convected rate
(except cast as a Lie derivative — see page 143).
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Lie Derivatives and reference configurations
Let denote any tensor that transforms under a rigid superimposed rota-

tion  according to

 (15.122)

Two particular choices for the  tensor are quite common:

• convected: , where  is the deformation gradient tensor.

• polar: , where  is the polar rotation tensor.

Note that both of these choices transform according to Eq. (15.122), as
required.

Consider any spatial tensor . Define an “overbar” operation as

 (15.123)

To understand the reason for the transpose, note that the tensor can be
written in basis notation as

 (15.124)

where two vectors written side-by-side are multiplied dyadically, and the base
vectors need not be orthonormal. Operating from the left by and from the
right by  gives

 (15.125)

In writing the last form, we have noted that is the same thing as
. We introduce a set of “helper” vectors defined

,  (15.126)

then Eq. (15.125) becomes

 (15.127)

This result shows that the components of with respect to the basis are
identical to the components of with respect to the basis. In a very loose
sense, is an “undistorted” version of . For example, when , the
undistortion operation takes away material distortion. When the ten-
sor is a proper rotation, then both the and bases may be selected to be
orthonormal. In this case, is an un-rotated version of . In this case, the
operation  takes away material rotation.

Recall that we assumed that is a spatial tensor. Hence, it transforms
according to

 (15.128)
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In light of the assumption of Eq. (15.122), “barred” tensor is easily verified
to be a “reference” tensor, meaning that its value is unaffected by a superim-
posed rigid rotation:

 (15.129)

To describe the rate of the distortion tensor , we will define

 (15.130)

By using our assumption of Eq. (15.122), it is straightforward to prove that

 (15.131)

We wish to take rates of . To do this, we need the following helper identity
for the rate of an inverse:*

 (15.132)

Using this, you can show that

,  (15.133a)

where  (15.133b)

To interpret this equation physically, first lets invert Eq. (15.126) to obtain the
spatial  basis in terms of the reference  basis:

,  (15.134)

If the reference basis  is constant, then taking rates gives

 (15.135)

Thus, the convected derivative in Eq. (15.133b) is seen to equal the ordi-
nary derivative minus those parts of the ordinary derivative that arise
from rates of the base vectors. Recalling that we are regarding the as a
distortion (or rotation if it is orthogonal), we interpret the convected deriva-
tive to be the part of the rate that is not caused by the distortion (or rotation).
From a modelling perspective, this would be the part of the rate caused by
material constitutive response, not just by material reorientation.

Importantly, note that Eq. (15.133a) may be written

 (15.136)

* Note the similarity of this identity with the scalar equation, .
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This equation says that the ordinary rate of the bared tensor is the same as
the bar operation acting on the co-rotational rate. Whenever there exists a
tensor such that the co-rotation tensor is expressible in the form of Eq.
(15.130), then the co-rotational rate is called a “Lie derivative” and you will
usually see it written in books in the form

 (15.137)

Alternative to Lie Derivatives in Constitutive models. For a mathemati-
cally limber reader, the preceding discussion of Lie derivatives probably did
shed some light on the physical meaning of a convected derivative. However,
the use of such strange time derivatives is foreign to many readers. Further-
more, using convected derivatives in numerical computations can be quite
cumbersome and sometimes inefficient. Consider, for example, the linear ver-
sion of Eq. (15.115):

, (in indicial form, )  (15.138)

where is the fourth-order tangent stiffness tensor. In order for this equation
to be generalized to anisotropic materials, the dependence on in
Eq. (15.115) must be appended to also include dependence on material orien-
tation. In other words, upon a superimposed rigid rotation, not must
change, the material stiffness tensor must also change. Specifically, to satisfy
PMFI, we must have

 (15.139)

Recalling Eq. (15.121) and (15.109), both and are spatial tensors. Thus,
to satisfy PMFI, the stiffness tensor must transform under superimposed
rotation such that

 (15.140)

In other words, the stiffness components must be referenced to a basis that
rotates with the material. Computing the rotated stiffnesses can be quite
expensive. An alternative and equivalent technique is to leave the stiffnesses
unchanged and instead unrotate the stress and strain rate. Then, once the
constitutive model is applied in this unrotated frame, the final result may be
rotated back to the spatial frame. This qualitative proposal is derived in math-
ematical detail below in terms of our generalized distortion/rotation tensor
and its associated “bar” operation defined in Eq. (15.123).

Barring both sides of Eq. (15.115) and applying Eq. (15.136) gives

, or in the linear case,  (15.141)
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We can always define a new constitutive function that depends implicitly on
 such that

 (15.142)

Hence, we may write the constitutive equation as

 (15.143)

In the linear case, applying the definition of the “bar” operation to Eq. (15.141)
shows that

, where  (15.144)

Here we have the ordinary rate of an “undistorted/unrotated” stress being a
function of the “undistorted/unrotated” stretching. This formulation has sev-
eral advantages:

• The stress rate is an ordinary rate, not a convected rate, and it is therefore
easier to integrate over time.

• After a numerical constitutive model has been developed to give good
answers for zero-rotation problems, it can be immediately generalized to
permit rotations by simply having the host code perform the “bar”
operation on all of the arguments to the constitutive model before calling
the model. Upon return, the host code then “unbars” the results.

• When expressed in terms of the barred reference configuration, the
constitutive Eq. (15.143) is not restricted to isotropy. For the linear case,
the “bar” stiffness is often regarded as an unchanging fourth-order tensor,
and the fourth-order transformation operation therefore becomes
unnecessary when working exclusively in the “barred” space.

The two most common choices for the “bar” transformation tensor  are

•  from the polar decomposition, in which case, using the Lie
derivative in the “unrotated” configuration is roughly equivalent to using
polar rates in a spatial formulation.

•  from the deformation gradient, in which case, using the Lie
derivative in the “un-convected” configuration is equivalent to using
convected coordinates. A key disadvantage is that this formulation may
require special attention to material nonlinearity to avoid instabilities in
compression.

When you consider thermodynamics, the Cauchy stress measure is typically
abandoned in favor of the Kirchhoff stress , defined to equal the Cauchy
stress times the Jacobian of the deformation. So the thermodynamically pref-
erable form for the constitutive law is

 (15.145)
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If we choose , then equals the second Piola Kirchhoff (PK2) stress
and equals the ordinary rate of Lagrange strain. If we choose , then

is the unrotated Kirchhoff stress and is the unrotated symmetric part of
the velocity gradient.*

Frame indifference is only an essential (not final) step
It’s important to keep in mind that frame indifference is only a necessary

property that must hold for any general constitutive model. Satisfying PMFI
is not sufficient to ensure that the constitutive model will perform well under
large material distortions. Different constitutive laws can predict widely vary-
ing — and sometimes absurd — results even if they satisfy PMFI.

Recall from Eq. (15.116) that a co-rotational stress rate is generally
expressible in the following form:

 (15.146)

For the polar rate, the tensor is equal to the skew-symmetric polar spin .
For the Jaumann rate, is the vorticity . It is straightforward (but not
trivial) to demonstrate that both rates are equivalent whenever material dis-
tortion is small. By this, we mean that the two rates are nearly equivalent
whenever the material has not significantly changed shape even if large size
and/or orientation changes have occurred. Mathematically, a motion involves
small distortions if the principal stretches are all nearly equal to each other.
For problems with small material distortion, all co-rotational rates predict
approximately the same answer, so it makes sense to use the one that is com-
putationally least expensive. For problems with large material distortion,
however, special care must be taken to handle the material nonlinearity.

To demonstrate that satisfaction of PMFI is not enough to obtain sensible
constitutive model predictions, Dienes [8] considered the prediction under
simple shear of simple isotropic linear elastic constitutive law

, where  is isotropic and constant.  (15.147)

Regardless of which objective rate is used, the above equation satisfies PMFI.
However, Dienes demonstrated that the Jaumann rate predicts anomalous
oscillatory shear stresses whereas the Polar rate predicts intuitively more
appealing monotonically increasing shear stress. The Jaumann rate performs
so poorly because, for simple shear, the vorticity is constant throughout
time, so the Jaumann rate basically assumes that a material element tumbles
and tumble throughout time. Simply drawing a single material element as it
deforms throughout time demonstrates that this thinking is flawed. Fibers

* For general motions, there does not exist any strain tensor  such that . I don’t know if a
similar statement holds in the unrotated configuration.
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that were originally perpendicular to the shear plane eventually rotate
approximately into the shear plane. Fibers in the shear plane never rotate
at all. Unlike the vorticity, the polar spin captures this effect — it equals
the vorticity at first, but it approaches zero as time increases. As a rule, all of
the objective rates are equivalent whenever material distortion is small. For
small distortions, the material does not significantly change shape, but may
permissibly change size and orientation.

Dienes definitely demonstrated that the Jaumann rate was “bad” in the
this context of simple shear with isotropic linear elasticity. However, the fact
that the polar rate was “less bad” does not mean that the polar rate was cor-
rect. Brannon [11] demonstrated that even the polar rate gives incorrect pre-
dictions when applied to distortion of a fiber-dominant composite material.
The heart of the issue is not which rate you use. The key to good constitutive
modelling is to handle material nonlinearity properly. The natural rate is the
one that makes the nonlinear constitutive model as simple in structure as pos-
sible.

When implementing large distortion capability into a code, it is essential to
permit the constitutive equations to retain control of the nonlinear material
response. Minimally, all material models must satisfy PMFI. One way to sat-
isfy this requirement is for the host code to always work in the unrotated ref-
erence configuration. Beyond that, the treatment of large material distortion
should be retained in the realm of the constitutive model. We do not believe
that there is one magical strain measure or fabulous co-rotational rate that
will serve all materials well — that’s why the treatment of large material dis-
tortion must remain the responsibility of the material model. The host code
should be responsible for PMFI by always working in an unrotated configura-
tion.
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16. Rigid Body Mechanics

The mechanics of rigid bodies can be found in any good dynamics textbook
[e.g., References 4, 12]. However, very few textbooks present the theory in a
form that is optimized for readers who are already familiar with advanced
tensor analysis. Consequently, such books often provide derivations in very
awkward component forms. Here we present the theory for readers who
already know tensor analysis as it applies to continuum mechanics.

A body is considered “rigid” if the distance between any two points in the
body remains unchanged. This, of course, implies that the angles between any
two lines in the body also remains unchanged.

Let denote a fixed origin. Let denote a translating origin that differs
from the fixed origin by a vector . As sketched below, let be the initial
position of a particle with respect to . Let be the current position of the
same particle with respect to the fixed origin . Finally, let denote the cur-
rent position of the particle with respect to the moving origin .
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Figure 16.1. Identifying points within a rigid body. The position vector identifies the
initial location of the grey particle. The position vectors and both point the current
location of the same particle.

X
˜x

˜
r
˜

δ
˜

R
˜̃

X
˜

• Initial
configuration

configuration
after rotation
about the fixed
origin.

Final
configuration
149



May 9, 2002 3:49 pm
Rigid Body MechanicsD R A F T

R e c c a  B r a n n o n

b e

The position vectors and are defined to point from the fixed origin
to the particle in question. Consequently, and are both origin-dependent
vectors — they will change if a different fixed origin is used. By contrast, the
displacement vector is defined to point from the initial location of a particle
to the current location of the same particle. Consequently, the displacement
vector is unaffected by the choice of origin. Any vector with this property is
called a free vector.

Fig. 16.1 shows how a rigid motion may be regarded as a rotation about
the fixed origin followed by a rigid translation . This conclusion follows
directly from the requirement that the distances between any two points must
remain fixed. Fig. 16.2 demonstrates that the translation vector depends on
the choice of fixed origin. Therefore, much like position vectors, the translation
vector is an origin-dependent vector, not a free vector. By contrast, the rota-
tion tensor is the same regardless of the choice of origin. Thus, is a free
tensor.
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X
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R
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R
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Figure 16.2. Effect of choosing a different fixed origin. This sketch
shows the same rigid motion described in terms of two different choices
for the fixed origin. Changing the fixed origin has no effect on the rota-
tion tensor, but it does affect the translation vector.
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A simple description of rigid motion
Under the assumption of rigid motion, the particle’s current position

must be expressible in the form of a rotation plus a translation

 (16.1)

where is a rotation tensor and is a translation vector, both of which
depend on time but not position. In short hand, we indicate this dependence
as

 (16.2)

 (16.3)

As mentioned earlier, one disadvantage of this description of rotation is that it
contains the origin-dependent (and therefore physically non-intuitive) dis-
placement vector .

A relative description of rigid motion
For rigid motion problems, there is often a special point in the body for

which the complete motion is known (or there is a point for which the com-
plete motion can be relatively easily computed). This special point might be
the location of a hinge on a rigid robotic arm. Alternatively, the special point
might be the center of mass of the body. We will later show that the position of
the center of mass is governed by the linear momentum equation, which
depends only on the net force on the rigid body. Consequently, the position of
the body’s center of mass is relatively easy to track over time, making it a good
choice for use as a reference point.

A real physical body occupies only a finite amount of space. We will speak
of the virtual body as the extension of the rigid body to include all points in
space. Suppose, for example, that the real rigid body is a spherical shell. The
centroid of this body lies at the sphere center, which is not part of the physical
body, but it is part of the virtual body. Points in the infinite virtual body move
according to Eq. (16.1). Namely

 (16.4)

Let denote some particular convenient point in the virtual body. Let
denote the current position of the reference point. Later on, it will become

evident that a very good choice for the reference particle is the body’s center of
mass, . Another common choice for the reference particle is any particle
(such as the hinge point on a rigid robotic arm) for which the position vector of
the reference point is known for all time.

Equation (16.4) holds for all points on the rigid body, so it must also hold
for the reference point:
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 (16.5)

Subtracting Eq. (16.5) from (16.1) gives

 (16.6)

In this manner, we have separated a rigid motion into two distinct compo-
nents: The motion of a single reference particle and motion of all other
particles relative to the reference particle. In all of the following discussions,
we will presume that the reference particle is Lagrangian — in other words, it
always corresponds to the same physical point on the body so that the time
rate of  will be zero.

Velocity and angular velocity for rigid motion
Taking the reference point to be the center of mass, recall that rigid motion
may be described by

 (16.7)

in which

 and  (16.8)

are two known functions of time. In other words, the motion of a rigid body is
completely described by specifying the position of the center of mass as a
function of time and the rotation tensor as a function of time. For problems
in mechanics, the set of forces acting on the body are known, and the resulting
motion  is desired.

Importantly, the origin from which is measured is fixed, so the material
velocity is defined by

 (16.9)

or

 (16.10)

Noting that , this may be written as

,  (16.11)

where

 (16.12)

The angular velocity vector is defined to equal the axial vector associated
with the spin tensor . In other words, it is defined such that
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 for any vector  (16.13)

In direct notation, this implies that the angular rotation tensor is related to
the angular rotation vector  by

 (16.14)

In indicial notation, this is written

 (16.15)

Thus, the component matrix of can be constructed from the angular velocity
vector

 (16.16)

Conversely, if the angular rotation tensor is known, then the angular veloc-
ity vector  can be computed by

 (16.17)

or, written out explicitly (recalling that  is skew symmetric),

 (16.18)

 (16.19)

 (16.20)

As mentioned earlier, axial tensors are defined so that they are related to their
axial vectors by the important identity

 for any vector  (16.21)

Thus, applying this identity to Eq. (16.11) gives

,  (16.22)

which is the form of the velocity cited in most elementary dynamics textbooks.

Time rate of a vector embedded in a rigid body
Define an embedded vector to be one that points from one distinct point
 to a second point  embedded in a rigid body:

 (16.23)
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The rate of this embedded vector is

 (16.24)

Applying Eq. (16.11) shows that

,  (16.25)

 (16.26)

Hence, Eq. (16.24) becomes

 (16.27)

or

 (16.28)

In terms of the angular velocity vector, this result is written

 (16.29)

Acceleration for rigid motion
The second rate of Eq. (16.10) gives a very simple expression for the accel-

eration:

,  (16.30)

or, again noting that , the fully spatial expression for
the acceleration is

 (16.31)

Recall that

.  (16.32)

Therefore

 (16.33)

Thus

 (16.34)

and

.  (16.35)
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Applying Eq. (16.21) twice shows that

 for any vector  (16.36)

Note from Eq. (16.16) that

 (16.37)

or, rearranging this result,

 (16.38)

In direct notation,

 (16.39)

Thus, a way of computing  that is an alternative to Eq. (16.36) is

 for any vector  (16.40)

Recall from Eq. (16.14) that is the axial vector associated with the spin ten-
sor . The alternating tensor is independent of time. Therefore the time
rate of Eq. (16.14) gives

,  (16.41)

which shows that the angular acceleration vector is the axial vector associ-
ated with the rate of the spin tensor . Therefore the angular acceleration
vector and tensor satisfies the basic identity:

 for any vector  (16.42)

We may apply Eqs. (16.42) and (16.40) to Eq. (16.35) to write the acceleration
strictly in terms of the angular velocity vector:

 (16.43)

Alternatively, using Eq. (16.36) instead of (16.40),

 (16.44)

This is the form of the acceleration typically cited in dynamics textbooks.
Clearly, however, anyone with even a modicum of skill with tensor analysis
would prefer the elegant simplicity of Eq. (16.30) or (16.35).
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Important properties of a rigid body
One of the most profound discoveries in the study of rigid body dynamics is

that we do not need to know the exact mass distribution of the body in order to
completely determine its motion. Rather, it is sufficient to know the total mass

, the location of the center of mass and the value of a special second-
order “inertia tensor” defined relative to the center of mass. These three
quantities depend only on the body’s geometrical shape and its spatial density
distribution. They may be computed a priori at time zero and then easily
updated through time if the rotation tensor and the position of one point

 are known as functions of time.

Suppose that the size and shape of the rigid body are known. Let
be the mass density* of the rigid body at position . We can define

moments of the rigid body as follows:

Zeroth moment (the mass):  (16.45)

First moment (the CM):  (16.46)

Second moment about the CM:  (16.47)

Note that the zeroth moment is just the mass of the body. The first moment is
the center-of-mass (henceforth abbreviated CM). For now, the second moment
may be regarded as an abstract mathematical entity having no intuitive
meaning. Note that the second moment is defined using the position vector
relative to the center of mass. The second moment about an arbitrary point

 is defined

Second moment about :  (16.48)

We will later show that the second moment about an arbitrary point can
be computed from the second moment about the CM by the very simple for-
mula:

, where  (16.49)

Thus, if and are known, then the second moment about can be
immediately computed without needing to perform any integrations. In other
words, knowledge of does not provide any additional information, but its
use might simplify certain equations.

* spatially varying, but constant (in a Lagrangian sense) with respect to time.
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We will use a superscript “0” as an alternative notation for the value of a
quantity at time zero. Thus, for example,

 (16.50)

 (16.51)

 (16.52)

When analyzing the angular momentum equation, we will encounter the
expression

 (16.53)

where (recall) is the total mass of the body, is the alternating (permuta-
tion) tensor, is the second moment of the body about a point , and is
the angular velocity tensor. The expression in Eq. (16.53) is linear with
respect to and it must therefore be linear with respect to the axial vector .
In other words, there must exist a tensor that is independent of such
that

 (16.54)

Writing this expression in indicial form reveals that

 (16.55)

The tensor is called the rotational moment of inertia for the body, and we
will see that it plays a role in resisting rotational motion that is similar to the
inertial role of mass in resisting translational motion.

Example: sphere. For a sphere of radius , performing the integrals defin-
ing the second moment gives

 (16.56)

and

 (16.57)

This result can be found in any dynamics textbook.

Example: ellipsoid. Suppose an ellipsoid is defined by three orthogonal vec-
tors which equal the principal axes in both orientation and direction.
We could perform the integrals as was done for the sphere, but the answer can
be obtained more elegantly. We can construct a tensor , whose columns con-
tain the axis vectors, that maps a unit sphere to the ellipsoid such that
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 (16.58)

then

 (16.59)

and

 (16.60)

The tensor  is easily constructed from the sum of axis dyads:

 (16.61)

From which it follows that

 (16.62)

The planar moment of inertia about  is given by

 (16.63)

The tensor is called the rotational moment of inertia tensor. Just as mass
represents resistance of a body to translational acceleration, the inertia tensor
quantifies resistance of a body to rotational acceleration.

Switching between the second moment and inertia tensor. The inertia
tensor carries the same information as the second moment tensor. As a matter
of fact, if is known, then the second moment may be immediately con-
structed by

 (16.64)

Center shift for the inertia tensor. Using (16.49), we note that can be
computed from  by

, where  (16.65)

This result is a generalization of the parallel axis theorem cited in elementary
dynamics textbooks. It is a generalization because we make no requirement of
the existence of any parallel axes. Instead, the rotational moment of inertia
with respect to an arbitrary point can be computed if the rotational
moment of inertia about the CM is known. The traditional (specialized) paral-
lel axis theorem is presented in Eq. (16.94)
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Moment of inertia about a given axis. Given a plane of unit normal , the
planar moment of inertia is defined by

 (16.66)

or, in terms of the second moment,

 (16.67)

The planar moment of inertia is a measure of how “difficult” it is to rotate
the body about an axis parallel to  that passes through the center of mass.

Explicit matrices for the second moment and inertia tensor. To gain an
intuitive feeling for the general structure of the various second moments sup-
pose that we can set up a coordinate system with the origin at . Then we
can write

 (16.68)

The dyad would then have a Cartesian component matrix
given by

 (16.69)

Thus,

 (16.70)

The moment of inertia tensor would then be given by
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or
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The planar moment of inertia about the z-direction would then be
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 (16.73)

Thus, is the integral over the body of the distance from the z-axis, when
the coordinate system is set up so that the z-axis passes through the CM. The
off-diagonal components of the inertia tensor are called the “products” of
inertia. Some books omit the negative sign in their definitions, which is fine so
long as the negative is re-inserted whenever a change in coordinates is per-
formed.

We will later see that the second moment plays a role in the conservation
of angular momentum that is similar to the role played by the mass in the lin-
ear momentum equation. Mass is a measure of the body’s “resistance” to
changes in linear motion while the inertia tensor measures the body’s resis-
tance to changes in angular momentum.

Relationship between the current and initial moments. Conservation of
mass guarantees that the zeroth moments are equal. That is,

 (16.74)

Recall the definition of the center-of-mass:

 (16.75)

The second moment about the origin is defined

 (16.76)

A rigid motion may be described in terms of the motion of the CM by

 (16.77)

Therefore

+  (16.78)

Substituting this into Eq. (16.76) and pulling out arguments that don’t
vary with position gives

+  (16.79)

Simplifying shows that

 (16.80)
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From the center shift theorem (derived below), we know that

 (16.81)

Therefore

 (16.82)

Now recall that

 (16.83)

And

 (16.84)

Therefore

 (16.85)

In other words, the current second moment is related to the initial second
moment by a simple rotation.

Moment center shift theorem. Recall the definition of the second moment
about some point

 (16.86)

The goal of the moment center shift theorem is to find a formula that relates
to the (presumably already computed) second moment that is centered

about the CM. Written out explicitly, the integrand of Eq. (16.86) is

 (16.87)

Noting that is simply the location of a particular point and consequently
does not vary with position, it may be pulled out of the integrals in Eq. (16.87)
to give

 (16.88)

If  coincides with , then Eq. (16.88) becomes

 (16.89)

Thus, we may substitute  into Eq. (16.88) to obtain

, where  (16.90)
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This result shows that may be immediately constructed without having to
perform any new integrals over the body so long as and are known. This
is why the moments about the centroid are generally considered the “primi-
tive” moments from which all other moments may be derived.

To remember Eq. (16.90), it helps to recognize that is a measure of the
“resistance” of a body to an angular acceleration. This resistance is the small-
est when the axis of rotation passes through the CM. Thus, must always be
larger than . Hence,  is obtained from  by adding the dyad .

The parallel axis theorem. Recall the definition of the planar moment of
inertia, which measures the resistance of a body to an angular acceleration
about an axis parallel to  passing through the CM :

 (16.91)

We can similarly define the planar moment of inertia about a parallel axis
that passes through a different point :

 (16.92)

We can substitute Eq. (16.90) into this equation to obtain

 (16.93)

Rearranging gives the parallel axis theorem:

, where  (16.94)

Note that is the square magnitude of and is the magni-
tude of the part of that is parallel to . Therefore, is the perpendicular
distance between the two parallel axes.

Linear momentum of a rigid body
The total momentum for a body  is defined by

, where , and  (16.95)

Here, is the mass density and is the volume element. We can substitute
Eq. (16.10) into the above definition to obtain

 (16.96)

Now we recall that the rotation tensor depends only on time, not position.
Likewise, the velocity of the CM depends only on time, not position. Thus,

 (16.97)
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We recognize the remaining integral to equal times the position of the cen-
troid . Therefore, the last two terms cancel leaving only

 (16.98)

Thus, the angular spin of a rigid body has no effect on its linear momentum.

Angular momentum of a rigid body
The total angular momentum about the origin for a body  is defined by

 (16.99)

This may be written as

 (16.100)

We can again substitute Eq. (16.11) into Eq. (16.100) to obtain

=

=  (16.101)

Thus, noting that ,

 (16.102)

So the angular momentum becomes

 (16.103)

The definition of the inertia tensor about any point  is given in Eq. (16.54):

 (16.104)

With this, the angular momentum about the fixed laboratory origin becomes

 (16.105)

Kinetic energy
The total kinetic energy for a body  is defined by

 (16.106)

or, using Eq. (__) for the velocity
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Ė 1
2
--- v

˜
v
˜

• md
B
∫=
163



May 9, 2002 3:49 pm
Rigid Body MechanicsD R A F T

R e c c a  B r a n n o n

b e

=

=  (16.107)

It is straightforward to demonstrate that this can be simplified to

, where  (16.108)

Note that the inertia tensor and the angular velocity play roles that are
analogous to the roles played by the mass  and velocity .
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NEWTON’S EQUATION (balance of linear momentum)

The conservation of linear momentum states that the net force acting on
a rigid body must equal the rate of change of its linear momentum. That is

 (16.109)

Thus

, where  (16.110)

In other words, the net force equals the total mass times the acceleration of
the center of mass.

EULER’S EQUATION (balance of angular momentum)

The balance of angular momentum requires that the net torque (about the
fixed Laboratory origin) must equal the rate of change of the angular momen-
tum:

 (16.111)

Thus, taking rates of Eq. (16.105), gives

 (16.112)

Recall that

 (16.113)

Taking rates (noting that  does not vary with time and ) gives

 (16.114)

Dotting from the right by , noting that permits Eq. (16.112) to be
written

 (16.115)

or

 (16.116)

This result is the direct notation form of Euler’s equations of motion. This
expression may be applied using any convenient coordinate system
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Many texts present a much specialized version of Euler’s equation using an
origin coinciding with the CM (so that ) and also using a basis aligned
with the principal directions of the inertia tensor (so that the products of iner-
tial are zero). In this special limiting case, the above equation can be written
in component form as

 (16.117)

 (16.118)

,  (16.119)

which is the form cited most frequently in elementary dynamics books.
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 APPENDIX A.
FORTRAN CODE LISTINGS

Listing 1: Testing whether a matrix is a rotation
 SUBROUTINE CHKROT(DC,IERR)
C     ***********************************************************
C     This routine checks if a matrix DC is  a proper rotation.
C     To be orthogonal, the columns (or) rows of DC must form an
C     orthoNORMAL triad. That means that each column dotted with
C     itself must equal 1, and each column dotted with a different
C     column must equal 0. Furthermore, to be a proper rotation,
C     the columns of DC must form a RIGHT-HANDED orthonormal triad.
C     In other words, the determinant of DC must equal +1.
C     ***********************************************************
C
C INPUT
C -----
C   DC: candidate rotation matrix
C
C OUTPUT
C ------
C  IERR = 0 if the matrix is a proper rotation
C
C       = -1 if the matrix is orthogonal but has a negative determinant
C
C       = ij if the dot product between column i and column j is wrong
C          For example, if column 3 is not normalized, then ierr=33.
C          If column 1 is not perpendicular to column 2, then ierr = 12.

      INCLUDE ‘implicit.h’
C For double precison, the “implicit.h” include should contain one
C single line, depending on the desired precision. As appropriate,
C        IMPLICIT REAL(A-H,O-Z)             ! for single precision
C        IMPLICIT DOUBLE PRECISION(A-H,O-Z) ! for double precision

C ....parameters
C     real*8 pzero,pone
      PARAMETER (PZERO=0.0D0,PONE=0.1D1)
C ....passed
C     real*8 dc
      DIMENSION DC(3,3)
      INTEGER IERR
C
C ....local
      INTEGER I,J,K
C     real*8 dum
************************************************************************
      IERR=0
C       The direction cosines are known
C       Check that the columns form an orthonormal set
C
        DO I=1,3
        DO J=1,3
          DUM=PZERO
          DO K=1,3
             DUM=DUM+DC(K,I)*DC(K,J)
          END DO
          IF(I.EQ.J)DUM=DUM-PONE
          IF(ABS(DUM).GT.0.001D0)THEN
             IERR=10*I+J
             RETURN
          END IF
        ENDDO
        ENDDO
C
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C       Check if proper rotation by checking if det(dc)=+1
        DUM=DC(1,1)*DC(2,2)*DC(3,3)
     $     +DC(1,2)*DC(2,3)*DC(3,1)
     $     +DC(2,1)*DC(3,2)*DC(1,3)
     $     -DC(3,1)*DC(2,2)*DC(1,3)
     $     -DC(2,1)*DC(1,2)*DC(3,3)
     $     -DC(1,1)*DC(2,3)*DC(3,2)
        DUM=DUM-PONE
        IF(ABS(DUM).GT.0.001D0)THEN
           IERR=-1
           RETURN
        END IF
C
      IERR=0
      RETURN
      END

Listing 2: Converting axis and angle to direction cosines
c---.----1----.----2----.----3----.----4----.----5----.----6----.----7--
      SUBROUTINE AA2DC(axis,angle,dc,ierr)
C     This routine converts axis and angle of rotation to a direction
c     cosine matrix.
C
C input
C -----
C    AXIS: a unit vector in the direction of the axis of rotation
C    ANGLE: the angle of rotation (by right hand rule around AXIS)
C
C output
C -----
C    DC: the direction cosine matrix defined such that DC(i,j) equals
C        the dot product between the ith laboratory base vector and the
C        jth rotated base vector.
C
C  MODIFICATION HISTORY
C  980826:rmb:created routine
C
************************************************************************
      INCLUDE ‘implicit.h’
C.....parameters
c     real*8 pone
      parameter (pone=0.1d1)
c.....passed
      integer ierr
c     real*8 axis,angle,dc
      dimension axis(3),dc(3,3)
C.....function (functions instead of subroutines)
C.....external
c.....local (not saved)
c     real*8 c,s,omc
C.....local (saved)
C.....data
C.....statement functions
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
      ierr=0

      c=cos(angle)
      s=sin(angle)
      omc=pone-c
      dc(1,1)=omc*axis(1)*axis(1)+c
      dc(2,2)=omc*axis(2)*axis(2)+c
      dc(3,3)=omc*axis(3)*axis(3)+c
      dc(1,2)=omc*axis(1)*axis(2)-s*axis(3)
      dc(2,3)=omc*axis(2)*axis(3)-s*axis(1)
      dc(3,1)=omc*axis(3)*axis(1)-s*axis(2)
      dc(2,1)=omc*axis(2)*axis(1)+s*axis(3)
      dc(3,2)=omc*axis(3)*axis(2)+s*axis(1)
      dc(1,3)=omc*axis(1)*axis(3)+s*axis(2)
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      RETURN
      END

Listing 3: Converting direction cosines to axis and angle
The following listing uses c-preprocessor directives to select the method by

which the task is performed. If METHOD1 is defined, then method 1 from page -
36 is used. Otherwise, method 2 from page -40 is used.

#ifdef METHOD1
      SUBROUTINE DC2AA(DC,AXIS,ANGLE,ierr)
************************************************************************
      INCLUDE ‘implicit.h’
c ....parameters
      parameter (pzero=0.0d0,pone=0.1d1,phalf=0.5d0)
      parameter (puny=0.1d-10)
c ....passed
      integer ierr
      dimension dc(3,3),axis(3)
c ....local
      integer i,j,k
      dimension scr(3,3)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
      ierr=0

c     The axis and angle are desired
      cth=(dc(1,1)+dc(2,2)+dc(3,3)-pone)*phalf
      sth=SQRT(pone-cth*cth)
      angle=acos(cth)
      if(abs(sth).gt.puny)then
          axis(1)=(dc(3,2)-dc(2,3))*phalf/sth
          axis(2)=(dc(1,3)-dc(3,1))*phalf/sth
          axis(3)=(dc(2,1)-dc(1,2))*phalf/sth
      elseif(cth.gt.pzero) then
c         The rotation tensor is the identity
c         and any axis will do.
          axis(1)=pone
          axis(2)=pzero
          axis(3)=pzero
      else
c         The rotation angle is exactly 180 degrees.
c         The rotation axis is therefore parallel to any nonzero
c         column of I+dc, where I is the identity matrix.
          do i=1,3
          do j=1,3
             scr(i,j)=dc(i,j)
          enddo
          enddo

          cth=pzero
          j=-12345
          do k=1,3
             scr(k,k)=scr(k,k)+pone
             sth=scr(1,k)**2+scr(2,k)**2+scr(3,k)**2
             if(sth.gt.cth)then
                cth=SQRT(sth)
                j=k
                scr(1,j)=scr(1,j)/cth
                scr(2,j)=scr(2,j)/cth
                scr(3,j)=scr(3,j)/cth
             endif
          enddo
          axis(1)=scr(1,j)
          axis(2)=scr(2,j)
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          axis(3)=scr(3,j)
      endif
      return
      end

#else
      SUBROUTINE DC2AA(DC,AXIS,ANGLE,ierr)
************************************************************************
      INCLUDE ‘implicit.h’
c ....parameters
      parameter (pzero=0.0d0,pone=0.1d1,ptwo=0.2d1,phalf=0.5d0)
c ....passed
      integer ierr
      dimension dc(3,3),axis(3)
c ....local
      integer i,j,k
      dimension scr(3,3)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
      ierr=0

c     The axis and angle are desired
      dum=(dc(1,1)+dc(2,2)+dc(3,3)-pone)*phalf
      angle=acos(dum)
c
c     The rotation axis is  parallel to any nonzero
c     column of R+R^T+(1-trR)I, where I is the identity matrix.
c     and R^T is the tranpose of R. Here R is the rotation matrix DC.
      dum=-ptwo*dum
      do i=1,3
      do j=1,3
         scr(i,j)=dc(i,j)+dc(j,i)
      enddo
      scr(i,i)=scr(i,i)+dum
      enddo

      smag=pzero
      j=-12345
      do k=1,3
         dum=scr(1,k)**2+scr(2,k)**2+scr(3,k)**2
         if(dum.gt.smag)then
            smag=dum
            j=k
         endif
      enddo
      smag=sqrt(smag)
      axis(1)=sign(   scr(1,j)/smag,   dc(3,2)-dc(2,3)   )
      axis(2)=sign(   scr(2,j)/smag,   dc(1,3)-dc(3,1)   )
      axis(3)=sign(   scr(3,j)/smag,   dc(2,1)-dc(1,2)   )

      return
      end

#endif
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Listing 4: Converting Euler angles to direction cosines.
c---.----1----.----2----.----3----.----4----.----5----.----6----.----7--
      SUBROUTINE EU2DC(EU,DC,ierr)
C
C INPUT
C -----
C   EU: The euler angles
C
C OUTPUT
c ------
c   DC: The direction cosine matrix.
c
************************************************************************
C     PURPOSE: This routine ....
C
C  MODIFICATION HISTORY
C  mm/dd/yy:who:modification
C
      INCLUDE ‘implicit.h’
C.....parameters
C.....common
c.....passed
      integer ierr
c     real*8 eu,dc
      dimension eu(3),dc(3,3)
C.....function (functions instead of subroutines)
C.....external
c.....local (not saved)
c     real*8 cphi,sphi,cth,sth,cpsi,spsi
C.....local (saved)
C.....data
C.....statement functions
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
      ierr=0

      cphi=COS(eu(1))
      sphi=SIN(eu(1))
      cth =COS(eu(2))
      sth =SIN(eu(2))
      cpsi=COS(eu(3))
      spsi=SIN(eu(3))

      dc(1,1)=cphi*cpsi - cth*sphi*spsi
      dc(2,1)=cpsi*sphi + cphi*cth*spsi
      dc(3,1)=spsi*sth

      dc(1,2)=-(cpsi*cth*sphi) - cphi*spsi
      dc(2,2)=cphi*cpsi*cth - sphi*spsi
      dc(3,2)=cpsi*sth

      dc(1,3)=sphi*sth
      dc(2,3)=-(cphi*sth)
      dc(3,3)=cth

      RETURN
      END
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Listing 5: Converting direction cosines to Euler angles.
C---.----1----.----2----.----3----.----4----.----5----.----6----.----7--
      SUBROUTINE DC2EU(DC,EULER,ierr)
c
c   This routine converts an orthogonal proper rotation matrix to euler
c   angles.
c
c INPUT
c -----
c  DC: direction cosine matrix for the rotation TENSOR
C      DC(i,j) is defined as the inner product between the ith lab
C      base vector with the jth rotated base vector.
c
c OUTPUT
c ------
C  EULER: euler angles {phi,theta,psi}, which describe the rotation
C     of the lab triad by the following procedure...First rotate
C     the triad an angle phi about its z-axis. Then rotate the new
C     triad an angle theta about its own new x-axis. Then rotate
C     the newer triad an angle psi about its own z-axis.
c  IERR: =0 if success, =1 otherwise
************************************************************************
      INCLUDE ‘implicit.h’
c ....parameters
c     real*8 pzero,pone,puny,small
      parameter (pzero=0.0d0,pone=0.1d1,small=0.1d-8,puny=0.1d-20)
c ....passed
      integer ierr
c     real*8 dc,euler
      dimension dc(3,3), euler(3)
c ....local
c     real*8 dum,dum11,dum12,dum21,dum22,cth,sthsq,theta,psi,phi
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
      cth=dc(3,3)
      sthsq=pone-cth*cth
      if(sthsq.lt.puny)then
        theta=acos(cth)
        psi=pzero
        phi=atan2(dc(2,1),dc(1,1))
        return
      endif

      dum11=dc(1,1)
     $   +((dc(2,3)*dc(3,2) + dc(1,3)*dc(3,1)*dc(3,3))/sthsq)
      dum12=dc(1,2)
     $   -(dc(2,3)*dc(3,1) - dc(1,3)*dc(3,2)*dc(3,3))/sthsq
      dum21=dc(2,1)
     $   -(dc(1,3)*dc(3,2) - dc(2,3)*dc(3,1)*dc(3,3))/sthsq
      dum22=dc(2,2)
     $   +(dc(1,3)*dc(3,1) + dc(2,3)*dc(3,2)*dc(3,3))/sthsq

      dum=sqrt(dum11**2+dum22**2+dum12**2+dum21**2)
      if(dum.gt.small)then
c       The DC matrix is not proper orthogonal
        ierr=1
        return
      endif
      theta=acos(cth)
      phi=atan2(dc(1,3),-dc(2,3))
      psi=atan2(dc(3,1), dc(3,2))
      euler(1)=phi
      euler(2)=theta
      euler(3)=psi

      ierr=0
      return
      end
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Listing 6: Generating a uniformly random unit normal
 SUBROUTINE RANDA(AXIS)
c     This routine outputs a random unit normal
c
c OUTPUT
c ------
C    AXIS: The random unit axis.
C
************************************************************************
C
      INCLUDE ‘implicit.h’
c ....parameters
c     real*8 pi
      parameter (pi=0.3141592653589793d1)
c     real*8 pone,ptwo
      parameter (pone=0.1d1,ptwo=0.2d1)
c ....passed
c     real*8 axis
      dimension axis(3)
c ....functions
c     real*8 rand
c ....local
c     real*8 phi, theta
c ....local (SAVED)
c     real*8 seed
c     save seed
c     data seed/0.0/
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
      phi=ptwo*pi*drand(0)
      theta=ACOS(pone-ptwo*drand(0))
      axis(1)=sin(theta)*cos(phi)
      axis(2)=sin(theta)*sin(phi)
      axis(3)=cos(theta)
      return
      end
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Listing 7: Generating a uniformly random rigid rotation.
C This file contains two subroutines, RANDC and RNDC, both of
C which compute a uniformly random rotation tensor. The only difference
C between them is the way that they do it.
C
C The routine randc computes the rotation by generating two
C uniformly random unit vectors, orthonormalizing them,
C and then generating the third vector by a right-hand cross product.
C
C The routine rndc computes the rotation via Shoemake’s algorithm.
C
      SUBROUTINE RANDDC(R)
C This routine calls either RANDC or RNDC, depending on how the
C programmer desires the rotation to be generated.
      INCLUDE ‘implicit.h’
C     real*8 r
      DIMENSION R(3,3)
      CALL RANDC(R)
      RETURN
      END
C
C
C
C
************************************************************************
      SUBROUTINE RANDC(R)
C This routine computes a uniformly random rigid rotation tensor
C This routine calls randa to generate a uniformly random
C direction for the rotated e1 axis.  Then randa is called again
C to generate a second random axis. The rotated e2 is taken to
C equal the projection of the second random direction to the
C plane with normal equal to e1. Finally, the third direction is
C given by the right hand cross product of e1 x e2.
C
C OUTPUT
C ------
C  R: The direction cosine tensor components.  The ij component
C     of R equals the ith lab base vector dotted with the jth rotated
C     base vector.
************************************************************************
      INCLUDE ‘implicit.h’
C     real*8 small,r,dum
      PARAMETER (SMALL=.1D0)
      DIMENSION R(3,3)
      EXTERNAL RANDA
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
      CALL RANDA(R(1,1))
    7 CALL RANDA(R(1,2))
C     subtract off the part of e2 that is in the direction of e1
      DUM=R(1,1)*R(1,2)+R(2,1)*R(2,2)+R(3,1)*R(3,2)
      R(1,2)=R(1,2)-DUM*R(1,1)
      R(2,2)=R(2,2)-DUM*R(2,1)
      R(3,2)=R(3,2)-DUM*R(3,1)
      DUM=SQRT(R(1,2)**2+R(2,2)**2+R(3,2)**2)
C
C     make certain that the two vectors are independent.
C     If dum is small, then the second random vector is nearly
C     parallel to the first, and we need to sample again.
      IF(DUM.LT.SMALL)GO TO 7
C
      R(1,2)=R(1,2)/DUM
      R(2,2)=R(2,2)/DUM
      R(3,2)=R(3,2)/DUM
C
      R(1,3)=R(2,1)*R(3,2)-R(3,1)*R(2,2)
      R(2,3)=R(3,1)*R(1,2)-R(1,1)*R(3,2)
      R(3,3)=R(1,1)*R(2,2)-R(2,1)*R(1,2)
C
      RETURN
      END
C
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C
************************************************************************
      SUBROUTINE RNDC(R)
C This routine computes a uniformly random rigid rotation tensor
C using Shoemake’s method.
C
C OUTPUT
C ------
C  R: The direction cosine tensor components.  The ij component
C     of R equals the ith lab base vector dotted with the jth rotated
C     base vector.
************************************************************************
      INCLUDE ‘implicit.h’
      PARAMETER (ONE=0.1D1,TWO=0.2D1,
     & PI=0.31415926535897932384626433832795028D1,
     & TWOPI=TWO*PI)
C     real*8 r
      DIMENSION R(3,3)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
      X0=drand(0)
      Y1=TWOPI*drand(0)
      Y2=TWOPI*drand(0)
C
      R1=SQRT(ONE-X0)
      R2=SQRT(X0)
      U0=COS(Y2)*R2
      U1=SIN(Y1)*R1
      U2=COS(Y1)*R1
      U3=SIN(Y2)*R2
C
      COEFI = TWO*U0*U0-ONE
      COEFUU= TWO
      COEFE = TWO*U0
C
      R(1,1)=COEFI+COEFUU*U1*U1
      R(2,2)=COEFI+COEFUU*U2*U2
      R(3,3)=COEFI+COEFUU*U3*U3
C
      R(2,3)=COEFUU*U2*U3-COEFE*U1
      R(3,1)=COEFUU*U3*U1-COEFE*U2
      R(1,2)=COEFUU*U1*U2-COEFE*U3
C
      R(3,2)=COEFUU*U3*U2+COEFE*U1
      R(1,3)=COEFUU*U1*U3+COEFE*U2
      R(2,1)=COEFUU*U2*U1+COEFE*U3
C
      RETURN
      END
C
C
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 APPENDIX B.
Tensor and vector notation

This appendix outlines the essential vector and tensor concepts used in
this report. A far more extensive tutorial on tensor analysis may be found in
Reference [14]. Throughout this report, scalars are denoted in plain italics
( ). Vectors are typeset with a single under-tilde ( ). Second-order
tensors are shown with two under-tildes ( ). Likewise, the order of
higher-order tensors is indicated by the number of under-tildes.

Two vectors written side-by-side are multiplied dyadically. For example,
is a second-order tensor with components given by . Any second-

order tensor may be expanded in terms of basis dyads as . Here
(and throughout this report) all free indices range from 1 to 3. Furthermore,
repeated indices imply summation from 1 to 3.

A single raised dot denotes the vector inner-product defined by

.  (B.1)

The single raised dot continues to denote the vector inner product even when
acting between higher-order tensors. For example,

.  (B.2)

Composition of two tensors is another example:

.  (B.3)

The deviatoric part of a tensor is denoted by a “prime.” Hence,

,  (B.4)

where  is the identity tensor and “tr” denotes the trace. Specifically,

.  (B.5)

The tensor inner product is denoted by “ ” and is defined by

.  (B.6)

Note that

.  (B.7)

The magnitude of a second-order tensor is defined

.  (B.8)

The tensor inner product is allowed to operate between any two tensors of at
least second order. For example, if  is a fourth-order tensor, then
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.  (B.9)

The remainder of this appendix provides some introductory remarks about the
vector and tensor analysis, and may be skipped by readers familiar with ele-
mentary concepts in those fields of study.

Vectors
A first course in calculus usually vaguely defines an engineering vector as

“something with length and direction,” such as velocity, electric field, or dis-
placement. The vague notion of a vector is then refined by showing how a vec-
tor can be described by a set of three components referenced to three base
directions. A mathematician defines a vector more generally as a member of a
set for which addition and scalar multiplication are closed and satisfy certain
properties. By closed, we mean that adding two vectors gives a vector and
multiplying a vector times a scalar gives a vector. This sounds simple enough,
but proving closure is typically the most awkward and difficult step because it
requires a clear discerning definition of membership in the proposed set. An
ordinary engineering vector is an entity consisting of three numbers (compo-
nents) and three non-parallel reference directions (basis). The components
must change in a particular manner upon a change in basis. It is this “change-
of-basis” rule that is used as the discerning definition of an engineering vector.
When the three reference directions are mutually perpendicular, orthogonal
matrices play a predominant role.

If are base vectors then any engineering vector may be
written

 (B.10)

where are the “components” of the vector with respect to the
basis. If is a different choice for the basis, the same

vector may be written

,  (B.11)

where are the components of the vector with respect to the
basis. If the two bases are orthonormal, then the components

are related to the components in a particular way, as explained in the main
text.
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ṽ1e
˜ 1 ṽ2e
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Tensors

A tensor is often described as a linear transformation that takes vectors to
vectors. Consider, for example, a function that transforms a vector into a
new vector 3 times as long, but with the same orientation. In other words, con-
sider

 (B.12)

This function is linear because (as can be easily verified)

 for all scalars
and  for all vectors  and .  (B.13)

Thus, we now know that “f” is a tensor. However, is just the transformation
rule. When most people talk about “tensors,” they are referring to something
that is described by a matrix of components that are referenced to a
basis, similar to the way that vector components are referenced to a basis.
Before discussing how to convert into a matrix of components, consider
the following less trivial example of a linear operator that takes vectors to vec-
tors: Suppose  is a known constant vector. Then the vector cross product

 (B.14)

is a vector-to-vector transformation is that is linear with respect to because
it also satisfies the linearity conditions of Eq. (B.13). Thus, we now know that
this “f” is a tensor. Here it is even less clear how to construct the matrix
associated with this tensor.

When the transformed vectors are ordinary engineering vectors a
tensor “f” is describable by a matrix referenced to a basis. To see why,
let’s look at the linearity property itself. Let denote some conve-
nient orthonormal basis. Now let be some vector. Since the
vectors form a basis, then we know that there must exist three components

 such that

 (B.15)

Because the function  is linear, we can apply Eq. (B.13) to write

,

where  (B.16)

Being vectors themselves, each of the vectors must be expressible as a lin-
ear combination of the basis. In other words, we know there
must exist components  such that

 (B.17)
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The index takes values from 1 to 3, so is a matrix whose columns
contain the components of the three vectors with respect to the

basis. If and if , then put-
ting (B.17) into (B.16) shows that

 (B.18)

Thus, all of the information about the linear transformation function is con-
tained completely in the matrix. Once the component matrix
is known, computing is simply a matter of matrix multiplication. In direct
notation, Eq. (B.18) is written

,  (B.19)

where

 (B.20)

The nine possible pairs are called the tensor basis dyads. The basis dyad
is a special tensor whose associated matrix has zeros everywhere except

a 1 in the position. In practice, when someone speaks of a “tensor,” they are
usually referring to  instead of the original transformation rule .

The component matrix for the tensor associated with Eq. (B.12) is

 (B.21)

The component matrix for the tensor associated with Eq. (B.14) is

 (B.22)

In general, given a tensor transformation rule expressed in component
form such that . The tensor component matrix may be found
by

 (B.23)
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