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from numerous grad students and professors from all over the world.
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Curvilinear Analysis in a Euclidean Space
Rebecca M.Brannon, University of New Mexico, First draft: Fall 1998, Present draft: 6/17/04.

1.  Introduction
This manuscript is a student’s introduction on the mathematics of curvilinear coordinates,

but can also serve as an information resource for practicing scientists. Being an introduction,
we have made every effort to keep the analysis well connected to concepts that should be
familiar to anyone who has completed a first course in regular-Cartesian-coordinate1 (RCC)
vector and tensor analysis. Our principal goal is to introduce engineering specialists to the
mathematician’s language of general curvilinear vector and tensor analysis. Readers who are
already well-versed in functional analysis will probably find more rigorous manuscripts
(such as [14]) more suitable. If you are completely new to the subject of general curvilinear
coordinates or if you seek guidance on the basic machinery associated with non-orthonormal
base vectors, then you will probably find the approach taken in this report to be unique and
(comparatively) accessible. Many engineering students presume that they can get along in
their careers just fine without ever learning any of this stuff. Quite often, that’s true. Nonethe-
less, there will undoubtedly crop up times when a system operates in a skewed or curved
coordinate system, and a basic knowledge of curvilinear coordinates makes life a lot easier.
Another reason to learn curvilinear coordinates — even if you never explicitly apply the
knowledge to any practical problems — is that you will develop a far deeper understanding
of Cartesian tensor analysis. 

Learning the basics of curvilinear analysis is an essential first step to reading much of the
older materials modeling literature, and the theory is still needed today for non-Euclidean
surface and quantum mechanics problems. We added the proviso “older” to the materials
modeling literature reference because more modern analyses are typically presented using
structured notation (also known as Gibbs, symbolic, or direct notation) in which the highest-
level fundamental meaning of various operations are called out by using a notation that does
not explicitly suggest the procedure for actually performing the operation. For example, 
would be the structure notation for the vector dot product whereas  would be
the procedural notation that clearly shows how to compute the dot product but has the disad-

1. Here, “regular” means that the basis is right, rectangular, and normalized. “Right” means the basis forms a right-handed 
system (i.e., crossing the first base vector into the second results in a third vector that has a positive dot product with the 
third base vectors). “Rectangular” means that the base vectors are mutually perpendicular. “Normalized” means that the 
base vectors are dimensionless and of unit length. “Cartesian” means that all three coordinates have the same physical 
units [12, p90]. The last “C” in the RCC abbreviation stands for “coordinate” and its presence implies that the basis is 
itself defined in a manner that is coupled to the coordinates. Specifically, the basis is always tangent to the coordinate 
grid. A goal of this paper is to explore the implications of removing the constraints of RCC systems. What happens when 
the basis is not rectangular? What happens when coordinates of different dimensions are used? What happens when the 
basis is selected independently from the coordinates?

a
˜

b
˜

•
a1b1 a2b2 a3b3+ +
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vantage of being applicable only for RCC systems. The same operation would be computed
differently in a non-RCC system — the fundamental operation itself doesn’t change; instead
the method for computing it changes depending on the system you adopt. Operations such as
the dot and cross products are known to be invariant when expressed using combined com-
ponent+basis notation. Anyone who chooses to perform such operations using Cartesian com-
ponents will obtain the same result as anyone else who opts to use general curvilinear
components — provided that both researchers understand the connections between the two
approaches! Every now and then, the geometry of a problem clearly calls for the use of non-
orthonormal or spatially varying base vectors. Knowing the basics of curvilinear coordinates
permits analysts to choose the approach that most simplifies their calculations. This manu-
script should be regarded as providing two services: (1) enabling students of Cartesian analy-
sis to solidify their knowledge by taking a foray into curvilinear analysis and (2) enabling
engineering professionals to read older literature wherein it was (at the time) considered
more “rigorous” or stylish to present all analyses in terms of general curvilinear analysis. 

In the field of materials modeling, the stress tensor is regarded as a function of the strain
tensor and other material state variables. In such analyses, the material often contains certain
“preferred directions” such as the direction of fibers in a composite matrix, and curvilinear
analysis becomes useful if those directions are not orthogonal. For plasticity modeling, the
machinery of non-orthonormal base vectors can be useful to understand six-dimensional
stress space, and it is especially useful when analyzing the response of a material when the
stress resides at a so-called yield surface “vertex”. Such a vertex is defined by the convergence
of two or more surfaces having different and generally non-orthogonal orientation normals,
and determination of whether or not a trial elastic stress rate is progressing into the “cone of
limiting normals” becomes quite straightforward using the formal mathematics of non-
orthonormal bases.

This manuscript is broken into three key parts: Syntax, Algebra, and Calculus. Chapter 2
introduces the most common coordinate systems and iterates the distinction between irregu-
lar bases and curvilinear coordinates; that chapter introduces the several fundamental quanti-
ties (such as metrics) which appear with irresistible frequency throughout the literature of
generalized tensor analysis. Chapter 3 shows how Cartesian formulas for basic vector and
tensor operations must be altered for non-Cartesian systems. Chapter 4 covers basis and coor-
dinate transformations, and it provides a gentle introduction to the fact that base vectors can
vary with position. 

The fact that the underlying base vectors might be non-normalized, non-orthogonal, and/
or non-right-handed is the essential focus of Chapter 4. By contrast, Chapter 5 focuses on how
extra terms must appear in gradient expressions (in addition to the familiar terms resulting
from spatial variation of scalar and vector components); these extra terms account for the fact
that the coordinate base vectors vary in space. The fact that different base vectors can be used
at different points in space is an essential feature of curvilinear coordinates analysis.
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The vast majority of engineering applications use one of the coordinate systems illustrated
in Fig. 1.1. Of these, the rectangular Cartesian coordinate system is the most popular choice.
For all three systems in Fig. 1.1, the base vectors are unit vectors. The base vectors are also
mutually perpendicular, and the ordering is “right-handed” (i.e., the third base vector is
obtained by crossing the first into the second). Each base vector points in the direction that the
position vector moves if one coordinate is increased, holding the other two coordinates con-
stant; thus, base vectors for spherical and cylindrical coordinates vary with position. This is a
crucial concept: although the coordinate system has only one origin, there can be an infinite
number base vectors because the base vector orientations can depend on position.

Most practicing engineers can get along just fine without ever having to learn the theory
behind general curvilinear coordinates. Naturally, every engineer must, at some point, deal
with cylindrical and spherical coordinates, but they can look up whatever formulas they need
in handbook tables. So why bother learning about generalized curvilinear coordinates? Dif-
ferent people have different motivations for studying general curvilinear analysis. Those
dealing with general relativity, for example, must be able to perform tensor analysis on four
dimensional curvilinear manifolds. Likewise, engineers who analyze shells and membranes
in 3D space greatly benefit from general tensor analysis. Reading the literature of continuum
mechanics — especially the older work — demands an understanding of the notation. Finally,
the topic is just plain interesting in its own right. James Simmonds [7] begins his book on ten-
sor analysis with the following wonderful quote:

The magic of this theory will hardly fail to impose itself on anybody who has truly understood it; it 
represents a genuine triumph of the method of absolute differential calculus, founded by Gauss, Rie-
mann, Ricci, and Levi-Civita.
—Albert Einstein1

An important message articulated in this quote is the suggestion that, once you have mas-

x1

x2

x3

e
˜ 1

e
˜ 2

e
˜ 3

e
˜ r

e
˜ θ

e
˜ z
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x2

x3

θ r

z

φ

θ

e
˜ r

e
˜ θ

e
˜ φ

(orthogonal)
Cartesian coordinates

(orthogonal)
Cylindrical coordinates

(orthogonal)
Spherical coordinates

FIGURE 1.1 The most common engineering coordinate systems. Note that all three systems are orthogonal because
the associated base vectors are mutually perpendicular. The cylindrical and spherical coordinate systems are
inhomogeneous because the base vectors vary with position. As indicated,  depends on θ for cylindrical
coordinates and  depends on both θ and ψ for spherical coordinates.
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˜ r θ( ) ze
˜ z+=x

˜
x1e

˜ 1 x2e
˜ 2 x3e

˜ 3+ +=

(a) (c)(b)



rmbrann@me.unm.edu http://me.unm.edu/~rmbrann/gobag.html DRAFT June 17, 2004 4
tered tensor analysis, you will begin to recognize its basic concepts in many other seemingly
unrelated fields of study. Your knowledge of tensors will therefore help you master a broader
range of subjects.

1. From: “Contribution to the Theory of General Relativity,” 1915; as quoted and translated by C. Lanczos in The Einstein 
Decade, p213.
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This document is a teaching and learning tool. To assist with this goal, you will note that the
text is color-coded as follows:

Please direct comments to
rmbrann@me.unm.edu

1.1 Vector and Tensor Notation
The tensorial order of quantities will be indicated by the number of underlines. For exam-

ple,  is a scalar,  is a vector,  is a second-order tensor,  is a third order tensor, etc. We fol-
low Einstein’s summation convention where repeated indices are to be summed (this rule will
be later clarified for curvilinear coordinates). 

You, the reader, are presumed familiar with basic operations in Cartesian coordinates (dot
product, cross-product, determinant, etc.). Therefore, we may define our structured terminol-
ogy and notational conventions by telling you their meanings in terms ordinary Cartesian
coordinates. A principal purpose of this document is to show how these same structured oper-
ations must be computed using different procedures when using non-RCC systems. In this sec-
tion, where we are merely explaining the meanings of the non-indicial notation structures, we
will use standard RCC conventions that components of vectors and tensors are identified by
subscripts that take on the values 1, 2, and 3. Furthermore, when exactly two indices are
repeated in a single term, they are understood to be summed from 1 to 3. Later on, for non-
RCC systems, the conventions for subscripts will be generalized.

The term “array” is often used for any matrix having one dimension equal to 1. This docu-
ment focuses exclusively on ordinary 3D physical space. Thus, unless otherwise indicated, the
word “array” denotes either a  or a  matrix. Any array of three numbers may be
expanded as the sum of the array components times the corresponding primitive basis arrays:

(1.1)

Everyday engineering problems typically characterize vectors using only the regular Carte-
sian (orthonormal right-handed) laboratory basis, . Being orthonormal, the base
vectors have the property that , where  is the Kronecker delta and the indices
(  and ) take values from 1 to 3. Equation (1.1) is the matrix-notation equivalent of the usual
expansion of a vector as a sum of components times base vectors:

(1.2)

BLUE definition⇒
RED important concept⇒

s v
˜

T
˜̃

ξ
˜̃̃

3 1× 1 3×

v1

v2

v3 
 
 
 
 

v1

1
0
0 

 
 
 
 

v2

0
1
0 

 
 
 
 

v3

0
0
1 

 
 
 
 

+ +=

e
˜ 1 e

˜ 2 e
˜ 3, ,{ }

e
˜ i e

˜ j• δij= δij
i j

v
˜

v1e
˜ 1 v2e

˜ 2 v3e
˜ 3+ +=
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More compactly,

(1.3)

Many engineering problems (e.g., those with spherical or cylindrical symmetry) become
extremely complicated when described using the orthonormal laboratory basis, but they sim-
plify superbly when phrased in terms of some other basis, . Most of the time, this
“other” basis is also a “regular” basis, meaning that it is orthonormal ( ) and
right handed ( ) — the only difference is that the new basis is oriented differ-
ently than the laboratory basis. The best choice for this other, more convenient, basis might
vary in space. Note, for example, that the bases for spherical and cylindrical coordinates illus-
trated in Fig. 1.1 are orthonormal and right-handed (and therefore “regular”) even though a
different set of base vectors is used at each point in space. This harks back to our earlier com-
ment that the properties of being orthonormal and curvilinear are distinct — one does not
imply or exclude the other.

Generalized curvilinear coordinates show up when studying quantum mechanics or shell
theory (or even when interpreting a material deformation from the perspective of a person
who translates, rotates, and stretches along with the material). For most of these advanced
physics problems, the governing equations are greatly simplified when expressed in terms of
an “irregular” basis (i.e., one that is not orthogonal, not normalized, and/or not right-
handed). To effectively study curvilinear coordinates and irregular bases, the reader must
practice constant vigilance to keep track of what particular basis a set of components is refer-
enced to. When working with irregular bases, it is customary to construct a complementary or
“dual” basis that is intimately related to the original irregular basis. Additionally, even
though it is might not be convenient for the application at hand, the regular laboratory basis
still exists. Sometimes a quantity is most easily interpreted using yet other bases. For example,
a tensor is usually described in terms of the laboratory basis or some “applications” basis, but
we all know that the tensor is particularly simplified if it is expressed in terms of its principal
basis. Thus, any engineering problem might involve the simultaneous use of many different
bases. If the basis is changed, then the components of vectors and tensors must change too. To
emphasize the inextricable interdependence of components and bases, vectors are routinely
expanded in the form of components times base vectors . 

What is it that distinguishes vectors from simple  arrays of numbers? The answer is
that the component array for a vector is determined by the underlying basis and this compo-
nent array must change is a very particular manner when the basis is changed. Vectors have
(by definition) an invariant quality with respect to a change of basis. Even though the compo-
nents themselves change when a basis changes, they must change in a very specific way — it
they don’t change that way, then the thing you are dealing with (whatever it may be) is not a
vector. Even though components change when the basis changes, the sum of the components
times the base vectors remains the same. Suppose, for example, that  is the regular

v
˜

vke
˜ k=

E
˜ 1 E

˜ 2 E
˜ 3, ,{ }

E
˜ i E

˜ j• δij=
E
˜ 3 E

˜ 1 E
˜ 2×=

v
˜

v1e
˜ 1 v2e

˜ 2 v3e
˜ 3+ +=

3 1×

e
˜ 1 e

˜ 2 e
˜ 3, ,{ }
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laboratory basis and  is some alternative orthonormal right-handed basis. Let the
components of a vector  with respect to the lab basis be denoted by  and let  denote the
components with respect to the second basis. The invariance of vectors requires that the basis
expansion of the vector must give the same result regardless of which basis is used. Namely, 

(1.4)

The relationship between the  components and the  components can be easily character-
ized as follows:

Dotting both sides of (1.4) by  gives: (1.5a)

Dotting both sides of (1.4) by  gives: (1.5b)

Note that . Similarly, . We can define
a set of nine numbers (known as direction cosines) . Therefore, 
and , where we have used the fact that the dot product is commutative
(  for any vectors  and ). With these observations and definitions, Eq. (1.5)
becomes

(1.6a)

(1.6b)

These relationships show how the { } components are related to the  components. Satisfy-
ing these relationships is often the identifying characteristic used to identify whether or not
something really is a vector (as opposed to a simple collection of three numbers). This discus-
sion was limited to changing from one regular (i.e., orthonormal right-handed) to another.
Later on, the concepts will be revisited to derive the change of component formulas that apply
to irregular bases. The key point (which is exploited throughout the remainder of this docu-
ment) is that, although the vector components themselves change with the basis, the sum of
components times base vectors in invariant.

The statements made above about vectors also have generalizations to tensors. For exam-
ple, the analog of Eq. (1.1) is the expansion of a  matrix into a sum of individual compo-
nents times base tensors:

(1.7)

Looking at a tensor in this way helps clarify why tensors are often treated as nine-dimen-
sional vectors: there are nine components and nine associated “base tensors.” Just as the inti-
mate relationship between a vector and its components is emphasized by writing the vector in
the form of Eq. (1.4), the relationship between a tensor’s components and the underlying basis
is emphasized by writing tensors as the sum of components times “basis dyads”. Specifically
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3 3×

A11 A12 A13

A21 A22 A23

A31 A32 A33

A11

1 0 0
0 0 0
0 0 0

A12

0 1 0
0 0 0
0 0 0

… A33

0 0 0
0 0 0
0 0 1

+ + +=
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in direct correspondence to Eq. (1.7) we write

. (1.8)

Two vectors written side-by-side are to be multiplied dyadically, for example,  is a sec-
ond-order tensor dyad with Cartesian ij components . Any tensor can be expressed as a
linear combination of the nine possible basis dyads. Specifically the dyad  corresponds to
an RCC component matrix that has zeros everywhere except “1” in the  position, which was
what enabled us to write Eq. (1.7) in the more compact form of Eq. (1.8). Even a dyad  itself
can be expanded in terms of basis dyads as . Dyadic multiplication is often
alternatively denoted with the symbol ⊗. For example,  means the same thing as .
We prefer using no “⊗” symbol for dyadic multiplication because it allows more appealing
identities such as . 

Working with third-order tensors requires introduction of triads, which are denoted struc-
turally by three vectors written side-by-side. Specifically,  is a third-order tensor with
RCC ijk components . Any third-order tensor can always be expressed as a linear com-
bination of the fundamental basis triads. The concept of dyadic multiplication extends simi-
larly to fourth and higher-order tensors.

Using our summation notation that repeated indices are to be summed, the standard com-
ponent-basis expression for a tensor (Eq. 1.8) can be written

. (1.9)

The components of a tensor change when the basis changes, but the sum of components times
basis dyads remains invariant. Even though a tensor comprises many components and basis
triads, it is this sum of individual parts that’s unique and physically meaningful.

A raised single dot is the first-order inner product. For example, in terms of a Cartesian
basis, . When applied between tensors of higher or mixed orders, the single dot
continues to denote the first order inner product; that is, adjacent vectors in the basis dyads
are dotted together so that .
Here  is the Kronecker delta, defined to equal 1 if  and 0 otherwise. The common opera-
tion,  denotes a first order vector whose  Cartesian component is . If, for exam-
ple, , then the RCC components of  may be found by the matrix multiplication:

 implies (for RCC) , or (1.10)

Similarly, , where the superscript “T” denotes the tensor
transpose (i.e., ). Note that the effect of the raised single dot is to sum adjacent indi-
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ces. Applying similar heuristic notational interpretation, the reader can verify that 
must be a scalar computed in RCC by . 

A first course in tensor analysis, for example, teaches that the cross-product between two
vectors  is a new vector obtained in RCC by

(1.11)

or, more compactly,

, (1.12)

where  is the permutation symbol 

 = 1 if  = 123, 231, or 312
 = –1 if  = 321, 132, or 213
 = 0 if any of the indices , , or  are equal. (1.13)

Importantly, 

(1.14)

This permits us to alternatively write Eq. (1.12) as

(1.15)

We will employ a self-defining notational structure for all conventional vector operations. For
example, the expression  can be immediately inferred to mean

(1.16)

The “triple scalar-valued product” is denoted with square brackets around a list of three
vectors and is defined . Note that

(1.17)

We denote the second-order inner product by a “double dot” colon. For rectangular Carte-
sian components, the second-order inner product sums adjacent pairs of components. For
example, , , and . Caution: many authors
insidiously use the term “inner product” for the similar looking scalar-valued operation

, but this operation is not an inner product because it fails the positivity axiom required
for any inner product.
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1.2 Homogeneous coordinates 

A coordinate system is called “homoge-
neous” if the associated base vectors are
the same throughout space. A basis is
“orthogonal” (or “rectangular”) if the
base vectors are everywhere mutually
perpendicular. Most authors use the term
“Cartesian coordinates” to refer to the
conventional orthonormal homogeneous
right-handed system of Fig. 1.1a. As seen
in Fig. 1.2b, a homogeneous system is not required to be orthogonal. Furthermore, no coordi-
nate system is required to have unit base vectors. The opposite of homogeneous is “curvilin-
ear,” and Fig. 1.3 below shows that a coordinate system can be both curvilinear and
orthogonal. In short, the properties of being “orthogonal” or “homogeneous” are indepen-
dent (one does not imply or exclude the other). 

1.3 Curvilinear coordinates
The coordinate grid is the family of

lines along which only one coordinate var-
ies. If the grid has at least some curved
lines, the coordinate system is called “cur-
vilinear,” and, as shown in Fig. 1.3, the
associated base vectors (tangent to the
grid lines) necessarily change with posi-
tion, so curvilinear systems are always
inhomogeneous. The system in Fig. 1.3a
has base vectors that are everywhere orthogonal, so it is simultaneously curvilinear and
orthogonal. Note from Fig. 1.1 that conventional cylindrical and spherical coordinates are
both orthogonal and curvilinear. Incidentally, no matter what type of coordinate system is
used, base vectors need not be of unit length; they only need to point in the direction that the

g
˜ 1

g
˜ 2

g
˜ 1

g
˜ 2

g
˜ 1

g
˜ 2

(b)e
˜ 1

e
˜ 2

e
˜ 1

e
˜ 2

e
˜ 1

e
˜ 2

Orthogonal (or rectangular)
homogeneous coordinates

Nonorthogonal
homogeneous coordinates

FIGURE 1.2 Homogeneous coordinates. The base vectors
are the same at all points in space. This condition is possible
only if the coordinate grid is formed by straight lines.

(a)

g
˜ 1

g
˜ 2

g
˜ 2

g
˜ 1

g
˜ 2

g
˜ 1(a)

orthogonal
curvilinear coordinates

g
˜ 1

g
˜ 2

g
˜ 2

g
˜ 1

g
˜ 1

g
˜ 2

nonorthogonal
curvilinear coordinates

FIGURE 1.3 Curvilinear coordinates. The base vectors are still
tangent to coordinate lines. The left system is curvilinear and
orthogonal (the coordinate lines always meet at right angles).

(b)



rmbrann@me.unm.edu http://me.unm.edu/~rmbrann/gobag.html DRAFT June 17, 2004 11
position vector would move when changing the associated coordinate, holding others con-
stant.1 We will call a basis “regular” if it consists of a right-handed orthonormal triad. The sys-
tems in Fig. 1.3 have irregular associated base vectors. The system in Fig 1.3a can be
“regularized” by normalizing the base vectors. Cylindrical and spherical systems are exam-
ples of regularized curvilinear systems.

In Section 2, we introduce mathematical tools for both irregular homogeneous and irregu-
lar curvilinear coordinates first deals with the possibility that the base vectors might be non-
orthogonal, non-normalized, and/or non-right-handed. Section 3 shows that the component
formulas for many operations such as the dot product take on forms that are different from
the regular (right-handed orthonormal) formulas. The distinction between homogeneous and
curvilinear coordinates becomes apparent in Section 5, where the derivative of a vector or
higher order tensor requires additional terms to account for the variation of curvilinear base
vectors with position. By contrast, homogeneous base vectors do not vary with position, so
the tensor calculus formulas look very much like their Cartesian counterparts, even if the
associated basis is irregular.

1.4 Difference between Affine (non-metric) and Metric spaces
As discussed by Papastavridis [12], there are situations where the axes used to define a

space don’t have the same physical dimensions, and there is no possibility of comparing the
units of one axis against the units of another axis. Such spaces are called “affine” or “non-met-
ric.” The apropos example cited by Papastavridis is “thermodynamic state space” in which
the pressure, volume, and temperature of a fluid are plotted against one another. In such a
space, the concept of lengths (and therefore angles) between two points becomes meaning-
less. In affine geometries, we are only interested in properties that remain invariant under
arbitrary scale and angle changes of the axes.

The remainder of this document is dedicated to metric spaces such as the ordinary physical
3D space that we all (hopefully) live in.

2.  Dual bases for irregular bases
Suppose there are compelling physical reasons to use an irregular basis .

Here, “irregular” means the basis might be nonorthogonal, non-normalized, and/or non-
right-handed. In this section we develop tools needed to derive modified component formu-
las for tensor operations such as the dot product. For tensor algebra, it is irrelevant whether the
basis is homogeneous or curvilinear; all that matters is the possibility that the base vectors

1. Strictly speaking, it is not necessary to require that the base vectors have any relationship whatsoever with the coordinate 
lines. If desired, for example, we could use arbitrary curvilinear coordinates while taking the basis to be everywhere 
aligned with the laboratory basis. In this document, however, the basis is always assumed tangent to coordinate lines. 
Such a basis is called the “associated” basis.

g
˜ 1 g

˜ 2 g
˜ 3, ,{ }
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might not be orthogonal and/or might not be of unit length and/or might not form a right-
handed system. Again, keep in mind that we will be deriving new procedures for computing
the operations, but the ultimate result and meanings for the operations will be unchanged. If,
for example, you had two vectors expressed in terms of an irregular basis, then you could
always transform those vectors into conventional RCC expansions in order to compute the
dot product. The point of this section is to deduce faster methods that permit you to obtain the
same result directly from the irregular vector components without having to transform to
RCC. 

To simplify the discussion, we will assume that the underlying space is our ordinary 3D
physical Euclidean space.1 Whenever needed, we may therefore assume there exists a right-
handed orthonormal laboratory basis,  where . This is particularly
convenient because we can then claim that there exists a transformation tensor  such that 

. (2.1)

If this transformation tensor is written in component form with respect to the laboratory
basis, then the  column of the matrix [F] contains the components of the  base vector with
respect to the laboratory basis. In terms of the lab components of [F], Eq. (2.1) can be written

(2.2)

Comparing Eq. (2.1) with our formula for how to dot a tensor into a vector [Eq. (1.10)], you
might wonder why Eq. (2.2) involves  instead of . After all, Eq. (1.10) appears to be tell-
ing us that adjacent indices should be summed, but Eq. (2.2) shows the summation index 
being summed with the farther (first) index on the tensor. There’s a subtle and important phe-
nomenon here that needs careful attention whenever you deal with equations like (2.1) that
really represent three separate equations for each value of i from 1 to 3. To unravel the mystery,
let’s start by changing the symbol used for the free index in Eq. (2.1) by writing it equivalently
by . Now, applying Eq. (1.10) gives . Any vector, , can be
expanded as . Applying this identity with  replaced by  gives , or,

. The expression  represents the  lab component of , so it must equal
. Consequently, , which is equivalent to Eq. (2.2).

Incidentally, the transformation tensor  may be written in a purely dyadic form as

(2.3)

1. To quote from Ref. [7], “Three-dimensional Euclidean space, , may be characterized by a set of axioms that expresses 
relationships among primitive, undefined quantities called points, lines, etc. These relationships so closely correspond to 
the results of ordinary measurements of distance in the physical world that, until the appearance of general relativity, it 
was thought that Euclidean geometry was the kinematic model of the universe.”
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Partial Answer: (a) The term “regular” is defined on page 10. 
(b) In terms of the lab basis, the component array of the first base vector is , so this must be the first
column of the [F] matrix.

This transformation tensor  is defined for the specific irregular basis of interest as it relates to
the laboratory basis. The transformation tensor for a different pair of bases will be different.
This does not imply that  is not a tensor. Readers who are familiar with continuum mechan-
ics may be wondering whether our basis transformation tensor  has anything to do with the
deformation gradient tensor  used to describe continuum motion. The answer is “no.” In
general, the tensor  in this document merely represents the relationship between the labora-
tory basis and the irregular basis. Even though our  tensor is generally unrelated to the
deformation gradient  tensor from continuum mechanics, it’s still interesting to consider the
special case in which these two tensors are the same. If a deforming material is conceptually
“painted” with an orthogonal grid in its reference state, then this grid will deform with the
material, thereby providing a natural “embedded” curvilinear coordinate system with an
associated “natural” basis that is everywhere tangent to the painted grid lines. When this
“natural” embedded basis is used, our transformation tensor  will be identical to the defor-
mation gradient tensor . The component forms of many constitutive material models
become intoxicatingly simple in structure when expressed using an embedded basis (it
remains a point of argument, however, whether or not simple structure implies intuitiveness).
The embedded basis co-varies with the grid lines — in other words, these vectors stay always
tangent to the grid lines and they stretch in proportion with the stretching of the grid lines.
For this reason, the embedded basis is called the covariant basis. Later on, we will introduce a
companion triad of vectors, called the contravariant basis, that does not move with the grid
lines; instead we will find that the contravariant basis moves in a way that it remains always
perpendicular to material planes that do co-vary with the deformation. When a plane of parti-
cles moves with the material, its normal does not generally move with the material!

 Study Question 2.1 Consider the following irregular base 
vectors expressed in terms of the laboratory basis:

. 

(a) Explain why this basis is irregular.

(b) Find the 3×3 matrix of components of the transformation
tensor  with respect to the laboratory basis.
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Our tensor  can be seen as characterizing a transformation operation that will take you
from the orthonormal laboratory base vectors to the irregular base vectors. The three irregular
base vectors,  form a triad, which in turn defines a parallelepiped. The volume of
the parallelepiped is given by the Jacobian of the transformation tensor , defined by

. (2.4)

Geometrically, the Jacobian J in Eq. (2.4) equals the volume of the parallelepiped formed by
the covariant base vectors . To see why this triple scalar product is identically
equal to the determinant of the transformation tensor , we now introduce the direct notation
definition of a determinant:

The determinant, det[ ] (also called the Jacobian), of a tensor  is the unique scalar 
satisfying

[ ] = det[ ]  for all vectors . (2.5)

Geometrically this strange-looking definition of the determinate states that if a parallelepiped
is formed by three vectors, , and a transformed parallelepiped is formed by the
three transformed vectors , then the ratio of the transformed volume to the
original volume will have a unique value, regardless what three vectors are chosen to form
original the parallelepiped! This volume ratio is the determinant of the transformation tensor.

Since Eq. (2.5) must hold for all vectors, it must hold for any particular choices of those vectors.
Suppose we choose to identify  with the underlying orthonormal basis .
Then, recalling from Eq. (2.4) that  is denoted by the Jacobian , Eq. (2.5) becomes

. The underlying Cartesian basis  is orthonor-
mal and right-handed, so . Recalling from Eq. (2.1) that the covariant basis is
obtained by the transformation , we get

, (2.6)

which completes the proof that the Jacobian J can be computed by taking the determinant of
the Cartesian transformation tensor or by simply taking the triple scalar product of the covari-
ant base vectors, whichever method is more convenient:

. (2.7)

The set of vectors  forms a basis if and only if  is invertible — i.e., the Jacobian
must be nonzero. By choice, the laboratory basis  is regular and therefore right-
handed. Hence, the irregular basis  is 

right-handed if 
left-handed if . (2.8)
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2.1 Modified summation convention
Given that  is a basis, we know there exist unique coefficients 

such that any vector  can be written . Using Einstein’s summation
notation, you may write this expansion as

(2.9)

By convention, components with respect to an irregular basis  are identified
with superscripts,1 rather than subscripts. Summations always occur on different levels — a
superscript is always paired with a subscript in these implied summations. The summation
convention rules for an irregular basis are:

1. An index that appears exactly once in any term is called a “free index,” and it must ap-
pear exactly once in every term in the expression.

2. Each particular free index must appear at the same level in every term. Distinct free in-
dices may permissibly appear at different levels. 

3. Any index that appears exactly twice in a given term is called a dummy sum index and 
implies summation from 1 to 3. No index may appear more than twice in a single term.

4. Given a dummy sum pair, one index must appear at the upper “contravariant” level, 
and one must appear at the lower “covariant” level.

5. Exceptions to the above rules must be clearly indicated whenever the need arises. 
• Exceptions of rule #1 are extremely rare in tensor analysis because rule #1 can never be violated in 

any well-formed tensor expression. However, exceptions to rule #1 do regularly appear in non-ten-
sor (matrix) equations. For example, one might define a matrix  with components given by 

. Here, both  and  are free indices, and the right-hand-side of this equation violates 
rule #1 because the index  occurs exactly once in the first term but not in the second term. This 
definition of the  numbers is certainly well-defined in a matrix sense2, but the equation is a vio-
lation of tensor index rule #1. Consequently if you really do wish to use the equation  
to define some matrix , then you should include a parenthetical comment that the tensor index 
conventions are not to be applied — otherwise your readers will think you made a typo.

• Exceptions of rules #2 and #4 can occur when working with a regular (right-handed orthonormal) 
basis because it turns out that there is no distinction between covariant and contravariant components 
when the basis is regular. For example,  is identically equal to  when the basis is regular. That’s 
why indicial expressions in most engineering publications show all components using only sub-
scripts. 

• Exceptions of rule #3 sometimes occur when the indices are actually referenced to a particular basis 
and are not intended to apply to any basis. Consider, for example, how you would need to handle an 
exception to rule #3 when defining the  principle direction  and eigenvalue  associated with 
some tensor . You would have to write something like “ ” 
in order to call attention to the fact that the index  is supposed to be a free index, not summed. An-
other exception to rule #3 occurs when an index appears only once, but you really do wish for a sum-
mation over that index. In that case you must explicitly show the summation sign in front of the 
equation. Similarly, if you really do wish for an index to appear more than twice, then you must ex-
plicitly indicate whether that index is free or summed.

1. The superscripts are only indexes, not exponents. For example,  is the second contravariant component of a vector  
— it is not the square of some quantity . If your work does involve some scalar quantity “ ”, then you should typeset 
its square as  whenever there is any chance for confusion.

2. This equation is not well defined as an indicial tensor equation because it will not transform properly under a basis 
change. The concept of what constitutes a well-formed tensor operation will be discussed in more detail later.
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We arbitrarily elected to place the index on the lower level of our basis , so
(recalling rule #4) we call it the “covariant” basis. The coefficients  have the index
on the upper level and are therefore called the contravariant components of the vector .
Later on, we will define covariant components  with respect to a carefully defined
complementary “contravariant” basis . We will then have two ways to write the
vector:  . Keep in mind: we have not yet indicated how these contra- and co-
variant components are computed, or what they mean physically, or why they are useful. For
now, we are just introducing the standard “high-low” notation used in the study of irregular
bases. (You may find the phrase “co-go-below” helpful to remember the difference between co- and con-
tra-variant.) 

We will eventually show there are four ways to write a second-order tensor. We will intro-

duce contravariant components  and covariant components , such that

. We will also introduce “mixed” components  and  such that

. Note the use of a “dot” to serve as a place holder to indicate the

order of the indices (the order of the indices is dictated by the order of the dyadic basis pair).

As shown in Section 3.4, use of a “dot” placeholder is necessary only for nonsymmetric tensors.

(namely, we will find that symmetric tensor components satisfy the property that ,

so the placement of the “dot” is inconsequential for symmetric tensors.). In professionally typeset

manuscripts, the dot placeholder might not be necessary because, for example,  can be

typeset in a manner that is clearly distinguishable from . The dot placeholders are more

frequently used in handwritten work, where individuals have unreliable precision or clarity

of penmanship. Finally, the number of dot placeholders used in an expression is typically

kept to the minimum necessary to clearly demark the order of the indices. For example, 

means the same thing as . Either of these expressions clearly show that the indices are sup-

posed to be ordered as “  followed by ,” not vice versa. Thus, only one dot is enough to

serve the purpose of indicating order. Similarly,  means the same thing as , but the dots

serve no clarifying purpose for this case when all indices are on the same level (thus, they are

omitted). The importance of clearly indicating the order of the indices is inadequately empha-

sized in some texts.1

1. For example, Ref. [4] fails to clearly indicate index ordering. They use neither well-spaced typesetting nor dot placehold-
ers, which can be confusing. 

g
˜ 1 g

˜ 2 g
˜ 3, ,{ }

a1 a2 a3, ,{ }

a
˜

a1 a2 a3, ,{ }

g
˜

1 g
˜

2 g
˜

3, ,{ }

a
˜

aig
˜ i aig

˜
i= =

Tij Tij

T
˜̃

Tijg
˜ ig˜ j Tijg

˜
ig
˜

j

˜
= = T•j

i Ti
•j

T
˜̃

T•j
i g

˜ ig˜
j Ti

•jg
˜

ig
˜ j= =

T•j
i Tj

•i=

T  j
i

Tj
  i

T•j
i•

T•j
i

i j

T••
ij Tij
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IMPORTANT: As proved later (Study question 2.6), there is no difference between cova-
riant and contravariant components whenever the basis is orthonormal. Hence, for example,

 is the same as . Nevertheless, in order to always satisfy rules #2 and
#4 of the sum conventions, we rewrite all familiar orthonormal formulas so that the summed
subscripts are on different levels. Furthermore, throughout this document, the following are
all equivalent symbols for the Kronecker delta: 

 = . (2.10)

BEWARE: as discussed in Section 3.5, the set of  values should be regarded as indexed
symbols as defined above, not as components of any particular tensor. Yes, it’s true that 
are components of the identity tensor  with respect to the underlying rectangular Cartesian
basis , but they are not the contravariant components of the identity tensor with
respect to an irregular  basis. Likewise,  are not the covariant components of
the identity tensor with respect to the irregular basis. Interestingly, the mixed-level Kronecker
delta components, , do turn out to be the mixed components of the identity tensor with
respect to either basis! Most of the time, we will be concerned only with the components of
tensors with respect to the irregular basis. The Kronecker delta is important in its own right.
This is one reason why we denote the identity tensor  by a symbol different from its compo-
nents. Later on, we will note the importance of the permutation symbol  (which equals +1
if ijk ={123, 231, or 312}, -1 if ijk={321, 213, or 132}, and zero otherwise). The permutation sym-
bol represents the components of the alternating tensor with respect to the any regular (i.e.,
right-handed orthonormal basis), but not with respect to an irregular basis. Consequently, we
will represent the alternating tensor by a different symbol  so that we can continue to use the
permutation symbol  as an independent indexed quantity. Tracking the basis to which
components are referenced is one the most difficult challenges of curvilinear coordinates.

Important notation glitch Square brackets [ ] will be used to indicate a  matrix, and
braces { } will indicate a  matrix containing vector components. For example, 
denotes the  matrix that contains the contravariant components of a vector . Similarly,

 is the matrix that contains the covariant components of a second-order tensor , and
 will be used to denote the matrix containing the contravariant components of . Any

indices appearing inside a matrix merely indicate the co/contravariant nature of the matrix —
they are not interpreted in the same way as indices in an indicial expression. The indices 
merely to indicate the (high/low/mixed) level of the matrix components. The rules on page 15
apply only to proper indicial equations, not to equations involving matrices. We will later

e
˜

1 e
˜

2 e
˜

3, ,{ } e
˜ 1 e

˜ 2 e
˜ 3, ,{ }

δij δi
j δ ij, ,

1  if  i=j
0  if  i j≠




δij

δ ij

I
˜̃

e
˜ 1 e

˜ 2 e
˜ 3, ,{ }

g
˜ 1 g

˜ 2 g
˜ 3, ,{ } δij

δi
j

I
˜̃

εijk

ξ
˜̃̃

εijk

3 3×

3 1× vi{ }

3 1× v
˜

Tij[ ] T
˜̃

Tij[ ] T
˜̃

ij
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prove, for example, that the determinant  can be computed by the determinant of the
mixed components of . Thus, we might write . The brackets around 
indicate that this equation involves the matrix of mixed components, so the rules on page 15
do not apply to the  indices. It’s okay that  and  don’t appear on the left-hand side.

2.2 The metric coefficients and the dual contravariant basis
For reasons that will soon become apparent, we introduce a symmetric set of numbers ,

called the “metric coefficients,” defined

. (2.11)

When the space is Euclidean, the  base vectors can be expressed as linear combi-
nations of the underlying orthonormal laboratory basis and the above set of dot products can
be computed using the ordinary orthonormal basis formulas.1

We also introduce a dual “contravariant” basis  defined such that

. (2.12)

Geometrically, Eq. (2.12) requires that the first contravariant base vector  must be perpen-
dicular to both  and , so it must be of the form . The as-yet undeter-
mined scalar  is determined by requiring that  equal unity. 

(2.13)

In the second-to-last step, we recognized the triple scalar product, , to be the
Jacobian  defined in Eq. (2.7). In the last step we asserted that the result must equal unity.
Consequently, the scalar  is merely the reciprocal of the Jacobian:

(2.14)

All three contravariant base vectors can be determined similarly to eventually give the final
result:

, , . (2.15)

where

. (2.16)

1. Note: If the space is not Euclidean, then an orthonormal basis does not exist, and the metric coefficients  must be spec-
ified a priori. Such a space is called Riemannian. Shell and membrane theory deals with 2D curved Riemannian mani-
folds embedded in 3D space. The geometry of general relativity is that of a four-dimensional Riemannian manifold. For 
further examples of Riemannian spaces, see, e.g., Refs. [5, 7].

detT
˜̃

T
˜̃

detT
˜̃

det T•j
i[ ]= T•j

i

ij i j

gij

g
ij

g
˜ i g

˜ j•≡

g
˜ 1 g

˜ 2 g
˜ 3, ,{ }

gij

g
˜

1 g
˜

2 g
˜

3, ,{ }

g
˜

i g
˜ j• δj

i=

g
˜

1

g
˜ 2 g

˜ 3 g
˜

1 α g
˜ 2 g

˜ 3×( )=
α g

˜
1 g

˜ 1•

g
˜

1 g
˜ 1• α g

˜ 2 g
˜ 3×( )[ ] g

˜ 1• αg
˜ 1 g

˜ 2 g
˜ 3×( )• αJ 1= = = =

“set”

g
˜ 1 g

˜ 2 g
˜ 3×( )•

J
α

α 1
J
---=

g
˜

1 1
J
--- g

˜ 2 g
˜ 3×( )= g

˜
2 1

J
--- g

˜ 3 g
˜ 1×( )= g

˜
3 1

J
--- g

˜ 1 g
˜ 2×( )=

J g
˜ 1 g

˜ 2 g
˜ 3×( )• g

˜ 1 g
˜ 2 g

˜ 3, ,[ ]≡=



rmbrann@me.unm.edu http://me.unm.edu/~rmbrann/gobag.html DRAFT June 17, 2004 19
An alternative way to obtain the dual contravariant basis is to assert that  is in
fact a basis; we may therefore demand that coefficients  must exist such that each covariant
base vector  can be written as a linear combination of the contravariant basis: .
Dotting both sides with  and imposing Eqs. (2.11) and (2.12) shows that the transformation
coefficients must be identical to the covariant metric coefficients: . Thus 

. (2.17)

This equation may be solved for the contravariant basis. Namely,

, (2.18)

where the matrix of contravariant metric components  is obtained by inverting the covari-
ant metric matrix . Dotting both sides of Eq. (2.18) by  we note that

 , (2.19)

which is similar in form to Eq. (2.11).

In later analyses, keep in mind that  is the inverse of the  matrix. Furthermore, both
metric matrices are symmetric. Thus, whenever these are multiplied together with a con-
tracted index, the result is the Kronecker delta:

. (2.20)

Another quantity that will appear frequently in later analyses is the determinant  of the
covariant  metric matrix and the determinant  of the contravariant  metric matrix:

 and . (2.21)

Recalling that the  matrix is the inverse of the  matrix, we note that 

. (2.22)

Furthermore, as shown in Study Question 2.5,  is related to the Jacobian J from Eqs. (2.4)
and (2.6) by

, (2.23)

Thus

. (2.24)

g
˜

1 g
˜

2 g
˜

3, ,{ }

Lik

g
˜ i g

˜ i Likg
˜

k=
g
˜ k

Lik gik=

g
˜ i gikg

˜
k=

g
˜

i gikg
˜ k=

gij

gij[ ] g
˜

j

gij g
˜

i g
˜

j•=

gij gij

gikgkj gkigkj gikgjk gkigjk δj
i= = = =

go
gij go gij

go det
g11 g12 g13

g21 g22 g23

g31 g32 g33

≡ go det
g11 g12 g13

g21 g22 g23

g31 g32 g33

≡

gij[ ] gij[ ]

go
1
go
-----=

go

go J2=

go 1
J2
-----=
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Non-trivial lemma1 Note that Eq. (2.21) shows that  may be regarded as a function of the
nine components of the  matrix. Taking the partial derivative of  with respect to a partic-
ular  component gives a result that is identical to the signed subminor (also called the
cofactor) associated with that component. The “subminor” is a number associated with each
matrix position that is equal to the determinant of the  submatrix obtained by striking
out the  row and  column of the original matrix. To obtain the cofactor (i.e., the signed
subminor) associated with the ij position, the subminor is multiplied by . Denoting this
cofactor by , we have

(2.25)

Any book on matrix analysis will include a proof that the inverse of a matrix  can be
obtained by taking the transpose of the cofactor matrix and dividing by the determinant:

(2.26)

From which it follows that . Applying this result to the case that  is
the symmetric matrix , and recalling that  is denoted , and also recalling that

 is given by , Eq. (2.25) can be written

(2.27)

Similarly, 

(2.28)

With these equations, we are introduced for the first time to a new index notation rule: sub-
script indices that appear in the “denominator” of a derivative should be regarded as super-
script indices in the expression as a whole. Similarly, superscripts in the denominator should
be regarded as subscripts in the derivative as a whole. With this convention, there is no viola-
tion of the index rule that requires free indices to be on the same level in all terms.

Recalling Eq. (2.23), we can apply the chain rule to note that

(2.29)

Equation (2.27) permits us to express the left-hand-side of this equation in terms of the contra-

1. This side-bar can be skipped without impacting your ability to read subsequent material.

go
gij go

gij

2 2×
i th j th

1–( )i j+

gij
C

∂go
∂gij
--------- gij

C=

A[ ]

A[ ] 1– A[ ]CT

det A[ ]
----------------=

A[ ]C det A[ ]( ) A[ ] T–= A[ ]
gij[ ] det gij[ ] go

gij[ ] 1– gij[ ]

∂go
∂gij
--------- gogij=

∂go

∂gij
--------- gogij=

∂go
∂gij
--------- 2J ∂J

∂gij
---------=



rmbrann@me.unm.edu http://me.unm.edu/~rmbrann/gobag.html DRAFT June 17, 2004 21
variant metric. Thus, we may solve for the derivative on the right-hand-side to obtain

(2.30)

where we have again recalled that .

Partial Answer: (a) (b)  (c) ,

. (d)  = .

∂J
∂gij
--------- 1

2
---Jgij=

go J2=

 Study Question 2.2 Let  represent the ordinary orthonormal laboratory basis. 
Consider the following irregular base vectors:

.

(a) Construct the metric coefficients .

(b) Construct  by inverting .

(c) Construct the contravariant (dual) basis by
directly using the formula of Eq. (2.15). Sketch
the dual basis in the picture at right and visually
verify that it satisfies the condition of Eq. (2.12).

(d) Confirm that the formula of Eq. (2.18)
gives the same result as derived in part (c).

(e) Redo parts (a) through (d) if  is now replaced by .

e
˜ 1 e

˜ 2 e
˜ 3, ,{ }

g
˜ 2

g
˜ 1

ê
˜ 1

ê
˜ 2

g
˜ 1 e

˜ 1 2e
˜ 2+=

g
˜ 2 e

˜ 1– e
˜ 2+=

g
˜ 3 e

˜ 3=

gij

gij[ ] gij[ ]

g
˜ 3 g

˜ 3 5e
˜ 3=

g
11

=5 g13=0 g22=2, , g11=2 9⁄ g33=1 g21= 1– 9⁄, , J=3

g
˜

2=1
3
--- g

˜ 3 g
˜ 1×( )= –2

3
---e

˜ 1+1
3
---e

˜ 2 g
˜

2 g21g
˜ 1 g22g

˜ 2 g23g
˜ 3+ += 1

9
---g

˜ 1– 5
9
---g

˜ 2+ 2
3
--- ê

˜ 1– 1
3
--- ê

˜ 2+=
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Partial Answer: (a) yes -- note the direction of the third base vector (b)

A faster way to get the metric coefficients: Suppose you already have the  with
respect to the regular laboratory basis. We now prove that the  matrix can by obtained by

. Recall that . Therefore 

, (2.31)

The left hand side is , and the right hand side represents the ij components of  with
respect to the regular laboratory basis, which completes the proof that the covariant metric
coefficients  are equal to the ij laboratory components of the tensor 

 Study Question 2.3 Let  represent the ordinary orthonormal laboratory basis. 
Consider the following irregular base vectors:

.

(a) is this basis right handed?

(b) Compute  and .

(c) Construct the contravariant (dual) basis.

(d) Prove that  points in the direction of the
outward normal to the upper surface of the
shaded parallelogram.

(d) Prove that  (see drawing label) is the
reciprocal of the length of .

(e) Prove that the area of the face of the parallelepiped whose normal is parallel to  is
given by the Jacobian  times the magnitude of .

e
˜ 1 e

˜ 2 e
˜ 3, ,{ }

g
˜ 2

g
˜ 1

ê
˜ 1

ê
˜ 2

g
˜

1

θ

h1

h2

g
˜ 1 e

˜ 1 2e
˜ 2+=

g
˜ 2 3e

˜ 1 e
˜ 2+=

g
˜ 3 7e

˜ 3–=

gij[ ] gij[ ]

g
˜

1

hk
g
˜

k

g
˜

k

J g
˜

k

Fij[ ]
gij[ ]

F[ ]T F[ ] g
˜ i

F
˜̃

e
˜ i•=

g
˜ i g

˜ j• F
˜̃

e
˜ i•( ) F

˜̃
e
˜ j•( )• e

˜ i F
˜̃

T•( ) F
˜̃

e
˜ j•( )• e

˜ i F
˜̃

T F
˜̃

•( ) e
˜ j••= = =

gij F[ ]T F[ ]

gij F
˜̃

T F
˜̃

•

 Study Question 2.4 Using the [F] matrix from Study Question 2.1, verify that  
gives the same matrix for  as computed in Question 2.2.

F[ ]T F[ ]
gij
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Partial Answer: (a) Substitute Eqs (2.1) and (2.32) into Eq. (2.12) and use the fact that

. (b) Follow logic similar to Eq. (2.31). (c) A correct proof must use the fact that  is

invertible. Reminder: a tensor  is positive definite iff  . The dot product

positivity property states that . (d) Easy: the determinant of a product is the product

of the determinants.

(a) By definition, , so the fact that these dot products equal the Kronecker delta says,
for example, that  (i.e., it is a unit vector) and  is perpendicular to , etc. (b) There is no
info about the handedness of the system. (c) By definition, the first contravariant base vector must be

 Study Question 2.5 Recall that the covariant basis may be regarded as a transformation 
of the right-handed orthonormal laboratory basis. Namely, . 

(a) Prove that the contravariant basis is obtained by the inverse transpose transformation:

, (2.32)

where  is the same as .

(b) Prove that the contravariant metric coefficients  are equal to the ij laboratory compo-
nents of the tensor .

(c) Prove that, for any invertible tensor , the tensor  is positive definite. Explain
why this implies that the  and  matrices are positive definite.

(d) Use the result from part (b) to prove that the determinant  of the covariant metric
matrix  equals the square of the Jacobian .

g
˜ i

F
˜̃

e
˜ i•=

g
˜

i F
˜̃

T– e
˜

i•=

e
˜

i e
˜ i

gij

F
˜̃

1– F
˜̃

T–
•

S
˜̃

S
˜̃

T S
˜̃

•
gij[ ] gij

go
gij J2

e
˜

i e
˜ j• δj

i= S
˜̃

A
˜̃

u
˜

A
˜̃

u
˜

•• 0> u
˜

0
˜

≠∀

v
˜

v
˜

• > 0 if v
˜

0
˜

≠
= 0 iff v

˜
 = 0̃




 Study Question 2.6 SPECIAL CASE (orthonormal systems)

Suppose that the metric coefficients happen to equal the Kronecker delta:

(2.33)

(a) Explain why this condition implies that the covariant base vectors are orthonormal.
(b) Does the above equation tell us anything about the handedness of the systems?
(c) Explain why orthonormality implies that contravariant base vectors are identically
equal to the covariant base vectors.

gij δij=

gij g
˜ i g

˜ j•≡
g
˜ 1 1= g

˜ 1 g
˜ 2
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perpendicular to the second and third covariant vectors, and it must satisfy , which (with
some thought) leads to the conclusion that .

Super-fast way to get the dual (contravariant) basis and metrics Recall [Eq. (2.1)] that
the covariant basis can be connected to the lab basis through the equation

(2.34)

When we introduced this equation, we explained that the  column of the lab component
matrix [F] would contain the lab components of . Later, in Study Question 2.5, Eq. (2.34), we
asserted that

, (2.35)

Consequently, we may conclude that the  column of  must contain the lab compo-
nents of . This means that the  row of  must contain the  contravariant base vec-
tor.

Partial Answer: (a)  (b) 

(c), . (d)  

(e) All results the same. This way was computationally faster!

g
˜

1 g
˜ 1• 1=

g
˜

1 g
˜ 1=

g
˜ i

F
˜̃

e
˜ i•=

i th

g
˜ i

g
˜

i F
˜̃

T– e
˜

i•=

ith F[ ] T–

g
˜

i i th F[ ] 1– ith

 Study Question 2.7 Let  represent the ordinary orthonormal laboratory basis. 
Consider the following irregular base vectors:

.

(a) Construct the  matrix by putting the lab compo-
nents of  into the  column.

(b) Find 

(c) Find  from the  row of .

(d) Directly compute  from the result of part (c).

(e) Compare the results with those found in earlier study questions and comment on
which method was fastest.

e
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˜ 2 e
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ê
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ê
˜ 2

g
˜ 1 e

˜ 1 2e
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˜ 3=
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F[ ] 1–

g
˜
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gij

F[ ]
1 1– 0
2 1 0
0 0 1

= F[ ] 1–
1 3⁄ 1 3⁄ 0
2 3⁄– 1 3⁄ 0
0 0 1

=

g
˜

2= –2
3
---e

˜ 1+1
3
---e

˜ 2 g12 g
˜

1 g
˜

2• dot product of 1st and 2nd rows 1
9
---–= = =
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Partial Answer: (a) We know that  because it’s the coefficient of  in the expression
. (b) Draw a path from the origin to the tip of the vector  such that the path consists of

straight line segments that are always parallel to one of the base vectors  or . You can thereby
demonstrate graphically that . Hence ,  (c) You’re on your own. (d) The
length of the second segment equals the magnitude of , or . (e) In general, when a vector  is
broken into segments parallel to the covariant basis, then the length of the segment parallel to  must
equal , with no implied sum on i.  Lesson here? Because the base vectors are not necessarily of
unit length, the meaning of the contravariant component  must never be confused with the length of
the associated line segment! The contravariant component  is merely the coefficient of  in the lin-
ear expansion . The component’s magnitude equals the length of the segment divided by the
length of the base vector! 

 Study Question 2.8 Consider the same irregular base vectors in Study Question 2.2. 
Namely, , , . 

Now consider three vectors, , , and , in
the 1-2 plane as shown. 

(a) Referring to the sketch, graphically
demonstrate that  gives a vector
identically equal to . Thereby explain
why the contravariant components of 
are: , , and .

(b) Using similar geometrical arguments,
find the contravariant components of .

(c) Find the contravariant components of . 

(d) The path from the tail to the tip of a vec-
tor can be decomposed into parts that are parallel to the base vectors. For example, the vec-
tor  can be viewed as a segment equal to  plus a segment equal to . What are the
lengths of each of these individual segments? 

(e) In general, when any given vector  is broken into segments parallel to the covariant
base vectors { , how are the lengths of these segments related (if at all) to the
contravariant components of the vector?
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2.3 Transforming components by raising and lower indices.
At this point, we have not yet identified a procedural means of determining the contravar-

iant components  or covariant components  — we merely assert that
they exist. The sets  and  are each bases, so we know that we may
express any vector  as

. (2.36)

Dotting both sides of this equation by  gives .
Equation (2.12) allows us to simplify the second term as . Using
Eq. (2.19), the third term simplifies as , where the last step utilized
the fact that the  matrix is symmetric. Thus, we conclude

(2.37)

. (2.38)

Similarly, by dotting both sides of Eq. (2.36) by  you can show that

(2.39)

. (2.40)

These very important equations provide a means of transforming between types of compo-
nents. In Eq. (2.40), note how the  matrix effectively “lowers” the index on , changing it
to an “i”. Similarly, in Eq. (2.38), the  matrix “raises” the index on , changing it to an “i”.
Thus the metric coefficients serve a role that is very similar to that of the Kronecker delta in
orthonormal theory. Incidentally, note that Eqs. (2.17) and (2.18) are also examples of raising

a1 a2 a3, ,{ } a1 a2 a3, ,{ }
g
˜ 1 g

˜ 2 g
˜ 3, ,{ } g

˜
1 g

˜
2 g

˜
3, ,{ }

a
˜

a
˜

akg
˜ k akg

˜
k= =

g
˜

i a
˜

g
˜

i• akg
˜ k g

˜
i• akg

˜
k g

˜
i•= =

akg
˜ k g

˜
i• akδk

i ai= =
akg

˜
k g

˜
i• akgki gikak= =

gik

ai a
˜

g
˜

i•=

ai gikak=

g
˜ i

ai a
˜

g
˜ i•=

ai gikak=

gik ak

gik ak
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and lowering indices.

Partial Answer: For the first one, the index “m” is repeated. The  allows you to lower the super-
script “m” on  so that it becomes an “l” when the metric coefficient is removed. The final simplified
result for the first expression is . Be certain that your final simplified results still have the same free
indices on the same level as they were in the original expression. The very last expression has a twist:
recognizing the repeated index , we can lower the index  on  and turn it into an “i” when we
remove  so that a simplified expression becomes . Alternatively, if we prefer to remove
the , we could raise the index  on , making it into a “k” so that an alternative simplification of
the very last expression becomes . Either method gives the same result. The final simplifi-
cation comes from recalling that the mixed metric components are identically equal to the Kronecker
delta. Thus, , which is merely one of the expressions given in Eq. (2.20).

Finding contravariant vector components — classical method In Study Question 2.8,
we used geometrical methods to find the contravariant components of several vectors. Eqs
(2.37) through (2.40) provide us with an algebraic means of determining the contravariant and
covariant components of vectors. Namely, given a basis  and a vector , the con-
tra- and co-variant components of the vector are determined as follows:

 STEP 1. Compute the covariant metric coefficients .

 STEP 2. Compute the contravariant metric coefficients  by inverting .

 STEP 3. Compute the contravariant basis .

 STEP 4. Compute the covariant components .

 STEP 5. Compute the contravariant components . Alternatively, .

Finding contravariant vector components — accelerated method If the lab components
of the vector  are available, then you can quickly compute the covariant and contravariant
components by noting that  and, similarly,

. The steps are as follows:

 STEP 1. Construct the  matrix by putting the lab components of  into the  column.

 STEP 2. The covariant components are found from , using lab components.
 STEP 3. The contravariant components are found from , using lab components.

 Study Question 2.9 Simplify the following expressions so that there are no metric coeffi-
cients:

, , ,  ,  , (2.41)amgml gpkup fngni rigijsj gijbkgkj gijgjk

gml
am

al

j j gjk

gij gijgjk gi
  k=

gjk j gij
gijgjk gi

  k=

gijgjk δi
k=

g
˜ 1 g

˜ 2 g
˜ 3, ,{ } a

˜

gij g
˜ i g

˜ j•=

gij gij[ ]

g
˜

i gijg
˜ j=

ai a
˜

g
˜ i•=

ai a
˜

g
˜

i•= ai gijaj=

a
˜ ai a

˜
g
˜ i• a

˜
F
˜̃

e
˜ i•• F

˜̃
T a

˜
•( ) e

˜ i•= = =
ai F

˜̃
1– a

˜
•( ) e

˜ i•=

F[ ] g
˜ i ith

F[ ]T a{ }
F[ ] 1– a{ }
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Partial Answer: Classical method: First get the contra- and co-variant base vectors, then apply the
formulas:

, and so on giving .
, and so on giving .

ACCELERATED METHOD: 

covariant components: . . .  agrees!

contravariant components: . . .  agrees!

By applying techniques similar to those used to derive Eqs. (2.37) through (2.40), the follow-
ing analogous results can be shown to hold for tensors:

(2.42)

(2.43a)

(2.43b)

(2.43c)

. (2.43d)

Again, observe how the metric coefficients play a role similar to that of the Kronecker delta
for orthonormal bases. For example, in Eq. (2.43a), the expression  “becomes”  as
follows: upon seeing , you look for a subscript i or m on T. Finding the subscript m, you
replace it with an i and change its level from a subscript to a superscript. The metric coeffi-
cient  similarly raises the subscript n on  to a become a superscript j on .

Incidentally, if the  matrix and lab components  are available for , then

,  ,  , and (2.44)

These are nifty quick-answer formulas, but for general discussions, Eqs. (2.43) are really more
meaningful and those equations are applicable even when you don’t have lab components.

 Study Question 2.10 Using the basis and vectors from Study Question 2.8, apply the clas-
sical step-by-step algorithm to compute the covariant and contravariant components of 
the vectors,  and . Check whether the accelerated method gives the same answer. Be 
sure to verify that your contravariant components agree with those determined geometri-
cally in Question 2.8.

a
˜

b
˜

a2 a
˜

g
˜ 2• 2e

˜ 1 e
˜ 2+( ) e

˜ 1– e
˜ 2+( )• 1–= = = a1 a2 a3, ,{ } 4 1– 0, ,{ }=

a2 a
˜

g
˜

2• 2e
˜ 1 e

˜ 2+( ) 2
3
---e

˜ 1– 1
3
---e

˜ 2+( )• 1–= = = a1 a2 a3, ,{ } 1 1– 0, ,{ }=

F[ ]T a{ }lab

1 2 0
1– 1 0

0 0 1

2
1
0

4
1–

0

= =

F[ ] 1– a{ }lab

1 3⁄ 1 3⁄ 0
2 3⁄– 1 3⁄ 0
0 0 1

2
1
0

1
1–

0

= =

T
˜̃

Tijg
˜ ig˜ j Tijg

˜
ig
˜

j T•j
i g

˜ ig˜
j Ti

•jg
˜

ig
˜ j= = = =

Tij g
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i T
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g
˜

j•• Tmngimgjn T•k
i gkj Tk

•jgki= = = =

Tij g
˜ i T

˜̃
g
˜ j•• Tmngmignj T•j

k gki Ti
•kgkj= = = =

T•j
i g

˜
i T

˜̃
g
˜ j•• Tikgkj Tkjgki Tm

•ngmignj= = = =

Ti
•j g

˜ i T
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g
˜

j•• Tkjgki Tikgkj T•n
m gmignj= = = =

Tmngimgjn Tij
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F[ ] T[ ]lab T
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Our final index changing properties involve the mixed Kronecker delta itself. The mixed
Kronecker delta  changes the index symbol without changing its level. For example,

 (2.45)

  etc. (2.46)

Contrast this with the metric coefficients  and , which change both the symbol and the
level of the sub/superscripts. 

Partial Answer: (a) Seeing the , you can get rid of it if you can find a subscript “i” or “m.” Find-
ing “i” as a subscript on H, you raise its level and change it to an “m,” leaving a “dot” placeholder
where the old subscript lived. After similarly eliminating the , the final simplified result is .
(b)  (c) For the first and last “g” factor, you can lower the “i” to make it an “m” and then raise
the “m” to make it a “p.” Alternatively, you can recognize the opportunity to apply Eq. (2.20) so that

, and then Eq. (2.46) allows you to change the original superscript “i” on the H tensor to
a “p” leaving its level unchanged. (d) The i and j are already on the upper level, so you leave them
alone. To raise the “k” subscript, you multiply by . The “p” is raised similarly so that the final
result is . (g) Yes, of course!

δi
j

viδi
j vj= viδj

i vj=

Tijδi
k Tkj= δj

nTi
•jδm

i Tm
•n=

gij gij

 Study Question 2.11 Let  denote a fourth-order tensor. Use the method of raising and 
lowering indices to simplify the following expressions so that there are no metric coeffi-
cients or Kronecker deltas ( , , or ) present.

(a)  (b)  (c) 

Multiply the following covariant, or mixed components by appropriate combinations of the
metric coefficients to convert them all to pure contravariant components (i.e., all super-
scripts).

(d)  (e)  (f) 

(g) Are we having fun yet?

H~~~~

gij gij δi
j

Hijklgimgjn δm
q Hipqngisgnj H•j•l

i•k•gimgjngmp

H••kp
ij•• Hijkl H•j•l

i•k•

gim

gjn H••kl
mn••

H•pm•
s••j

gimgmp δi
p=

gkm

Hijmn H••kp
ij•• gkmgpn=
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3.  Tensor algebra for general bases
A general basis is one that is not restricted to be orthogonal, normalized, or right-handed.
Throughout this section, it is important to keep in mind that structured (direct) notation for-
mulas remain unchanged. Here we show how the component formulas take on different forms
for general bases that are permissibly nonorthogonal, non-normalized, and/or non-right-
handed.

3.1 The vector inner (“dot”) product for general bases.
Presuming that the contravariant components of two vectors  and  are known, we may

expand the direct notation for the dot product as

. (3.1)

Substituting the definition (2.11) into Eq. (3.1), the formula for the dot product becomes

= . (3.2)

This result can be written in other forms by raising and lowering indices. Noting, for example,
that ,  we obtain a much simpler formula for the dot product

= . (3.3)

The simplicity of this formula and its close similarity to the familiar formula from orthonor-
mal theory is one of the principal reasons for introducing the dual bases. We can lower the
index on  by writing it as  so we obtain another formula for the dot product:

= . (3.4)

Finally, we recognize the index raising combination , to obtain yet another for-
mula:

= . (3.5)

Whenever new results are derived for a general basis, it is always advisable to ensure that
they all reduce to a familiar form whenever the basis is orthonormal. For the special case that
the basis  happens to be orthonormal, we note that . Furthermore, for an
orthonormal basis, there is no difference between contravariant and covariant components.
Thus Eqs. 3.2, 3.3, 3.4, and 3.5 do indeed all reduce to the usual orthonormal formula. 

a
˜

b
˜

a
˜

b
˜

• aig
˜ i( ) bjg

˜ j( )• aibj g
˜ i g

˜ j•( )= =

a
˜

b
˜

• aibjg
ij

= a1b1g11 a1b2g12 a1b3g13 a2b1g21 … a3b3g33+ + + + +

bjg
ij

bi=

a
˜

b
˜

• aibi= a1b1 a2b2 a3b3+ +

ai gkiak

a
˜

b
˜

• akbigki= a1b1g11 a1b2g12 a1b3g13 a2b1g21 … a3b3g33+ + + + +

bigki bk=

a
˜

b
˜

• aibi= a1b1 a2b2 a3b3+ +

g
˜ 1 g

˜ 2 g
˜ 3, ,{ } g

ij
=δij
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Partial Answer: (a)  (b)  (c) yes, of course it agrees! 

Index contraction The vector dot product is a special case of a more general operation,
which we will call index contraction. Given two free indices in an expression, we say that we
“contract” them when they are turned into dummy summation indices according to the fol-
lowing rules:

1. if the indices started at the same level, multiply them by a metric coefficient

2. if the indices are at different levels, multiply by a Kronecker delta (and simplify).

In both cases, the indices on the metric coefficient or Kronecker delta must be the same sym-
bol as the indices being contracted, but at different levels so that they become dummy sum-
mation symbols upon application of the summation conventions. The symbol  denotes
contraction of the first and second indices;  would denote contraction of the second and
eighth indices (assuming, of course, that the expression has eight free indices to start with!).
Index contraction is actually basis contraction and it is the ordering of the basis that dictates
the contraction. 

Consider, for example, the expression . This expression has six free indices, and
we will suppose that it therefore corresponds to a sixth-order tensor with the associated base
vectors being ordered the same as the free indices . To contract the first and sec-
ond indices (  and ), which lie on different levels, we must dot the first and second base vec-
tors into themselves, resulting in the Kronecker delta . Thus, contracting the first and

 Study Question 3.1 Consider the following nonorthonormal base vectors:

and 

Consider two vectors,  and , lying in the
1-2 plane as drawn to scale in the figure. 

(a) Express  and  in terms of the  lab
basis. 

(b) Compute  in the ordinary familiar
manner by using lab components.

(c) Use Eqs. (3.2) and (3.3) to compute .
Does the result agree with part (b)?

a
˜

b
˜

g
˜ 2

g
˜ 1

e
˜ 1

e
˜ 2

g
˜ 1 e

˜ 1 2e
˜ 2+=

g
˜ 2 e

˜ 1– e
˜ 2+= g

˜ 3 e
˜ 3=

a
˜

b
˜

a
˜

b
˜

e
˜

a
˜

b
˜

•

a
˜

b
˜

•

a
˜

2e
˜ 1 e

˜ 2+= a
˜

b
˜

• 2=

C1
2

C2
8

viWjkZlmn

g
˜

ig
˜ jg˜ kg

˜
lg
˜

mg
˜

n

i j
δj

i
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second indices of  gives , which simplifies to . Note that the
contraction operation has reduced the order of the result from a sixth-order tensor down to a
fourth-order tensor. To compute the contraction , we must dot the fourth base vector 
into the sixth base vector , which results in . Thus, contracting the fourth and sixth indi-
ces of  gives . To summarize,

Index contraction is equivalent to dotting together the base vectors associated with the identified indices. 

 denotes contraction of the  and  base vectors.

No matter what basis is used to expand a tensor, the result of a contraction operation will be
the same. In other words, the contraction operation is invariant under a change in basis. By
this, we mean that you can apply the contract and then change the basis or vice versa — the
result will be the same.

Incidentally, note that the vector dot product  can be expressed in terms of a contrac-
tion as  operating on the dyad . The formal  notation for index contraction is rarely
used, but the phrase “index contraction” is very common. 

3.2 Other dot product operations
Using methods similar to those in Section 3.1, indicial forms of the operation  are

found to be

 etc.

In all these formulas, the dot product results in a summation between adjacent indices on
opposite levels. If you know only  and , you must first raise an index to apply the dot
product. For example,

. (3.6)

In general, the correct indicial expression for any operation involving dot products can be
derived by starting with the direct notation and expanding each argument in whatever form
happens to be available. This approach typically leads to the opportunity to apply one or
more of Eqs. (2.11), (2.12), or (2.19). For example, suppose you know two tensors in the forms

 and . Then

. (3.7)

Note the change in dummy sum indices from ij to mn required to avoid violation of the sum-
mation conventions. For the final step, we merely applied Eq. (2.11). If desired, the above
result may be simplified by using the  to lower the “j” superscript on  (changing it to an
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“m”) so that

. (3.8)

Alternatively, we could have used the  to lower the “m” superscript on B (changing it to
a “j”) so that

. (3.9)

These are all valid expressions for the composition of two tensors. Note that the final result in
the last three equations involved components times the basis dyad . Hence those compo-
nents represent the mixed “ ”  components of .

3.3 The transpose operation
The transpose  of a tensor  is defined in direct notation such that 

 for all vectors  and . (3.10)

Since this must hold for all vectors, it must hold for any particular choice. Taking  and
, we see that 

. (3.11)

Similarly, you can show that 

. (3.12)
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˜̃

B
˜̃

• A•m
i B•n
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˜ ig˜

n=
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˜̃

B
˜̃

• AijBjng
˜ ig˜

n=

g
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n

i
•n A

˜̃
B
˜̃

•

 Study Question 3.2 Complete the following table, which shows the indicial components 
for all of the sixteen possible ways to express the operation , depending on what 
type of components are available for  and . The shaded cells have the simplest form 
because they do not involve metric coefficients. 
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The mixed components of the transpose are more different. Namely, taking  and , 

. (3.13)

Note that the high/low level of the indices remains unchanged. Only their ordering is
switched. Similarly,

. (3.14)

All of the above relations could have been derived in the following alternative manner: The
transpose  of any dyad is simply . Therefore, knowing that the transpose of a sum is
the sum of the transposes and that any tensor can be written as a sum of dyads, we can write:

. (3.15)

The coefficient of  is . Thus, , which is the same as Eq. (3.11).

3.4 Symmetric Tensors
A tensor  is symmetric only if it equals its own transpose. Therefore, referring to

Eqs. (3.11) through (3.15) the components of a symmetric tensor satisfy

, , . (3.16)

The last relationship shows that the “dot placeholder” is unnecessary for symmetric tensors,
and we may write simply  without ambiguity.

3.5 The identity tensor for a general basis.
The identity tensor  is the unique symmetric tensor for which 

 for all vectors  and . (3.17)

Since this must hold for all vectors, it must hold for any particular choice. Taking  and
, we find that . The left-hand side represents the ij covariant compo-

nents of the identity, and the right hand side is . By taking  and , it can be simi-
larly shown that the contravariant components of the identity are . By taking  and

, the mixed components of the identity are found to equal . Thus,

(3.18)

This result further validates raising and lowering indices by multiplying by appropriate met-
ric coefficients — such an operation merely represents dotting by the identity tensor.

u
˜

=g
˜ i v

˜
=g

˜
j

B
˜̃

T( )i
•j B•i

j=

B
˜̃

T( )•j
i Bj

•i=

u
˜

v
˜

( )T v
˜

u
˜

B
˜̃

T Bijg
˜

ig
˜

j( )T Bij g
˜

ig
˜

j( )T Bijg
˜

jg
˜

i= = =

g
˜

ig
˜

j Bij B
˜̃

T( )
ji

Bij=

A
˜̃

Aij Aji= Aij Aji= A•j
i Aj

•i=

Ai
j

I
˜̃

u
˜

I
˜̃

v
˜

•• u
˜

v
˜

•= u
˜

v
˜

u
˜

=g
˜ i

v
˜

=g
˜ j g

˜ i I
˜̃

g
˜ j•• g

˜ i g
˜ j•=

gij u
˜

=g
˜

i u
˜

=g
˜

j

gij u
˜

=g
˜

i

u
˜

=g
˜ j δi

j

I
˜̃

gijg
˜ ig˜ j gijg

˜
ig
˜

j δi
jg
˜

ig
˜ j δj

ig
˜ ig˜

j= = = =



rmbrann@me.unm.edu http://me.unm.edu/~rmbrann/gobag.html DRAFT June 17, 2004 35
3.6 Eigenproblems and similarity transformations
The eigenproblem for a tensor  requires the determination of all eigenvectors  and

corresponding eigenvalues λ such that 

. (3.19)

In this form, the eigenvector  is called the “right” eigenvector. We can also define a “left”
eigenvector  such that

. (3.20)

In other words, the left eigenvectors are the right eigenvectors of . The characteristic
equation for  is the same as that for , so the eigenvalues are the same for both the
right and left eigenproblems. Consider a particular eigenpair :

 . (no sum on k) (3.21)

Dot from the left by a left eigenvector , noting that  (no sum on m). Then

. (no sum on k) (3.22)

Rearranging, 

. (no sums) (3.23)

From this result we conclude that the left and right eigenvectors corresponding distinct
( ) eigenvalues are orthogonal. This motivates renaming the eigenvectors using dual
basis notation:

Rename .

Rename . (3.24)

The magnitudes of eigenvectors are arbitrary, so we can select normalization such that the
renamed vectors are truly dual bases:

. (3.25)

Nonsymmetric tensors might not possess a complete set of eigenvectors (i.e., the geometric
multiplicity of eigenvalues might be less than their algebraic multiplicity). If, however, the
tensor  happens to possess a complete (or “spanning”) set of eigenvectors, then those
eigenvectors form an acceptable basis. The mixed components of  with respect to this
principal basis are then

. (no sum on j) (3.26)

Ah! Whenever a tensor  possesses a complete set of eigenvectors, it is diagonal in its mixed
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principal basis! Stated differently,

. (3.27)

or

. (3.28)

In matrix analysis books, this result is usually presented as a similarity transformation. As
was done in Eqs. (2.2) and (2.32), we can invoke the existence of a basis transformation tensor

, such that 

 and . (3.29)

The columns of the matrix of  with respect to the laboratory  basis are simply
the right eigenvectors expressed in the lab basis:

. (3.30)

With Eq. (3.29), the diagonalization result (3.28) can be written as similarity transformation.
Namely,

 = , (3.31)

where

. (3.32)
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Partial Answer: .

The above discussion focused on eigenproblems. We now mention the more general relation-
ship between similar components and similarity transformations. When two tensors  and

 possess the same components but with respect to different mixed bases, i.e., when

 and , (identical mixed components) (3.34)

then the tensors are similar. In other words, there exists a transformation tensor  such that

 and therefore , (3.35)

In the context of continuum mechanics, the transformation tensor  is typically the defor-
mation gradient tensor. It is important to have at least a vague notion of this concept in order
to communicate effectively with researchers who prefer to do all analyses in general curvilin-
ear coordinates. To them, the discovery that two tensors have identical mixed components
with respect to different bases has great significance, whereas you might find it more mean-
ingful to recognize this situation as merely a similarity transformation.

 Study Question 3.3 Consider a tensor having components with respect to the orthonor-
mal laboratory basis given by

. (3.33)

Prove that this tensor has a spanning set of eigenvectors . Find the labora-
tory components of the basis transformation tensor , such that . Also
verify Eq. (3.31) that  is similar to a tensor that is diagonal in the laboratory basis,
with the diagonal components being equal to the eigenvalues of .
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3.7 The alternating tensor
When using a nonorthonormal or non-right-handed basis, it is a good idea to use a differ-

ent symbol  for the alternating tensor so that the permutation symbol  may retain its
usual meaning. As we did for the Kronecker delta, we will assign the same meaning to the
permutation symbol regardless of the contra/covariant level of the indices. Namely,

 = . (3.39)

Important: These quantities are all defined the same regardless of the contra- or co- level at
which the indices are placed. The above defined permutation symbols are the components of
the alternating tensor with respect to any regular right-handed orthonormal laboratory basis,
so they do not transform co/contravariant level via the metric tensors. It is not allowed to
raise or lower indices on the ordinary permutation symbol with the metric tensors. A similar
situation was encountered in connection with the Kronecker delta of Eq. (2.10).

Through the use of the permutation symbol, the three formulas written explicitly in Eq.
(2.15) can be expressed compactly as a single indicial equation:

. (3.40)

In terms of an orthonormal right-handed basis, the alternating tensor is

. (3.41)

 Study Question 3.4 Suppose two tensors  and  possess the same contravariant 
components with respect to different bases. In other words, 

 and  (same contravariant components) (3.36)

Demonstrate by direct substitution that

, (3.37)

where  is a basis transformation tensor defined such that

. (3.38)
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In terms of a general basis, the basis form for the alternating tensor is

, (3.42)

where

, , , etc. (3.43)

Using Eq. (3.40), 

. (3.44)

Thus, simplifying the last expression,

. (3.45)

Hence, the covariant alternating tensor components simply equal to the permutation symbol
times the Jacobian. This result could have been derived in the following alternative way: Sub-
stituting Eq. (2.1) into Eq. (3.43) and using the direct notation definition of determinant gives 

 = [ , , ] = . (3.46)
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 Study Question 3.5 Use Eq. (2.32), in Eq. (3.43) to prove that

(3.47)ξ ijk 1
J
--- εijk=

 Study Question 3.6 Consider a basis that is orthonormal but left-handed (see Eq. 2.8). 
Prove that

. (3.48)

This is why some textbooks claim to “define” the permutation symbol to be its negative
when the basis is left-handed. We do not adopt this practice. We keep the permutation
symbol unchanged. For a left-handed basis, the permutation symbol stays the same, but
the components of the alternating tensor change sign.

ξ ijk εijk–=
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3.8 Vector valued operations

CROSS PRODUCT In direct notation, the cross product is defined

. (3.49)

Hence, 

. (3.50)

Alternatively,

. (3.51)

Axial vectors Some textbooks choose to identify certain vectors such as angular velocity as
“different” because, according to these books, they take on different form in a left-handed
basis. This viewpoint is objectionable since it intimates that physical quantities are affected by
the choice of bases. Those textbooks handle these supposedly different “axial” vectors by
redefining the left-handed cross-product to be negative of the right-hand definition. Malvern
suggests alternatively redefining the permutation symbol to be its negative for left-hand
basis. Malvern’s suggested sign change is handled automatically by defining the alternating
tensor as we have above. Specifically Eqs. (3.44) and (2.8) show that the alternating tensor
components  will automatically change sign for left-handed systems. Hence, with this
approach, there is no need for special formulas for left-hand bases.

3.9 Scalar valued operations

TENSOR INNER (double dot) PRODUCT The inner product between two dyads,  and
 is a scalar defined

(3.52)

When applied to base vectors, this result tells us that

etc. (3.53)

The “etc” stands for the many other ways we could possibly mix up the level of the indices;
the basic trend should be clear. 

The inner product between two tensors,  and , is defined to be distributive over addi-
tion. In other words, each tensor can be expanded in terms of known components times base
vectors and then Eq. (3.53) can be applied to the base vectors. If, for example, the mixed 
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components of  and the contravariant  components of  are known, then the inner
product between  and  is

(3.54)

Stated differently, to find the inner product between two tensors,  and , you should con-
tract1 the adjacent indices pairwise so that the first index in  is contracted with the first index
in  and the second index in  is contracted with the second index in . To clarify, here are
some expressions for the tensor inner product for various possibilities of which components
of each tensor are available:

(3.55)

Note that 

(3.56)

where “tr” is the trace operation.

TENSOR MAGNITUDE The magnitude of a tensor  is defined

(3.57)

Based on the result of Eq. (3.55), note that the magnitude of a tensor is not found by simply
summing the squares of the tensor components (and rooting the result). Instead, the tensor
magnitude is computed by rooting the summation running over each component of  multi-
plied by its dual component. If, for example, the components  are known, then the dual
components  must be computed by  so that

(3.58)

TRACE The trace an operation in which the two base vectors of a second order tensor are
contracted2 together, resulting in a scalar. In direct notation, the trace of a tensor  can be
defined . There are four ways to write the tensor :

. (3.59)

The double dot operation is distributive over addition. Furthermore, for any vectors  and ,
. Therefore, the trace is found by contracting the base vectors to give

, (3.60)

1. The definition of index “contraction” is given on page 31.
2. The definition of index “contraction” is given on page 31.
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or

. (3.61)

Note that the last two expressions are the closest in form to the familiar formula for the trace
in orthonormal bases.

TRIPLE SCALAR-VALUED VECTOR PRODUCT In direct notation,

. (3.62)

Thus, applying Eq. (3.50),

. (3.63)

DETERMINANT The determinant of a tensor  is defined in direct notation as

 for all vectors . (3.64)

Recalling that the triple scalar product is defined  we may apply
previous formulas for the dot and cross product to conclude that

, (3.65)

Recalling Eqs. (3.44) and (3.47), we may introduce the ordinary permutation symbol to write
this result as

. (3.66)

Now that we are using the ordinary permutation symbol, we may interpret this result as a
matrix equation. Specifically, the left hand side represents the determinant of the contravari-
ant component matrix  times the permutation symbol . Therefore, the above equation
implies that . Recalling Eq. (2.23), 

. (3.67)

Similarly, it can be shown that

. (3.68)

In other words, if you have the matrix of covariant components, you compute the determi-
nant of the tensor  by finding the determinant of the  matrix and multiplying the result
by .

Suppose the components of  are known in mixed form. Then Eq. (3.64) gives

. (3.69)
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Recalling Eqs. (3.45), we may introduce the ordinary permutation symbol. Noting that the J’s
on each side cancel, the above result as

. (3.70)

Therefore, the determinant of the tensor  is equal to the determinant of the matrix of mixed
components: 

. (3.71)

Likewise, it can be shown that

. (3.72)

3.10 Tensor-valued operations

TRANSPOSE We have already discussed one tensor-valued operation, the transpose. Spe-
cifically, consider a tensor expressed in one of its four possible ways: 

. (3.73)

In Section 3.3, we showed that the transpose may be obtained by transposing the matrix base
dyads.

. (3.74)

Most people are more accustomed to thinking of transposing components rather than base
vectors. Referring to the above result, we note that

, or  (3.75a)
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, or (3.75c)

, or (3.75d)

Using our matrix notational conventions, these equations would be written

. (3.76a)

. (3.76b)

. (3.76c)

. (3.76d)

Here, we have intentionally used different indices (  and ) on the left-hand-side to remind
the reader that matrix equations are not subject to the same index rules. The indices are
present within the matrix brackets only to indicate to the reader which components (covari-
ant, contravariant, or mixed) are contained in the matrix. 
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Equation (3.76a) says that the matrix of contravariant components of  are obtained by
taking the transpose of the matrix of contravariant components of the original tensor .
Similarly, Eq. (3.76b) says that the covariant component matrix for  is just the transpose of
the covariant matrix for . 

The mixed component formulas are more tricky. Equation (3.76c) states that the low-high
mixed components of  are obtained by taking the transpose of the high-low components
of . Likewise, Eq. (3.76d) states that the high-low mixed components of  are obtained by
taking the transpose of the low-high components of . 

INVERSE Consider a tensor . Let . Then

. (3.77)

Hence

. (3.78)

Hence, the contravariant components of  are obtained by inverting the  matrix of covari-
ant components.

Alternatively note a different component form of Eq. (3.77) is

. (3.79)

This result states that the high-low mixed  components of  are obtained by inverting the
high-low mixed  matrix. 

The formulas for inverses may be written in our matrix notation as
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COFACTOR Without proof, we claim that similar methods can be used to show that the
matrix of high-low mixed  components of  are the cofactor of the low-high  matrix.
Note that the  components come from the  matrix. The contravariant matrix for  will
equal the cofactor of the covariant matrix for  times the metric scale factor . The full set of
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formulas is

. (3.81a)

. (3.81b)

. (3.81c)

. (3.81d)

DYAD By direct expansion, . Thus,
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4.  Basis and Coordinate transformations
This chapter discusses how vector and tensor components transform when the basis changes.
This chapter may be skipped without any negative impact on the understandability of later chapters. 

Chapter 3 had focused exclusively on the implications of using an irregular basis. For vec-
tor and tensor algebra (Chapter 3), all that matters is the possibility that the basis might be
non-normalized and/or non-right-handed and/or non-orthogonal. For vector and tensor
algebra, it doesn’t matter whether or not the basis changes from one point in space to another
— that’s because algebraic operations are always applied at a single location. By contrast, dif-
ferential operations such as the spatial gradient (discussed later in Chapter 5) are dramatically
affected by whether or not the basis is fixed or spatially varying. This present chapter pro-
vides a gentle transition between the topics of Chapter 3 to the topics of Chapter 4 by outlin-
ing the transformation rules that govern how components of a vector with respect to one
irregular basis will change if a different basis is used at that same point in space.

Throughout this document, we have asserted that any vector  can (and should) be
regarded as invariant in the sense that the vector itself is unchanged upon a change in basis.
The vector can be expanded as a sum of components  times corresponding base vectors :

(4.1)

It’s true that the individual components will change if the basis is changed, but the sum of
components times base vectors will be invariant. Consequently, a vector’s components must
change in a very specific way if a different basis is used. 

Basis transformation discussions are complicated and confusing because you have to con-
sider two different systems at the same time. Since each system has both a covariant and a
contravariant basis, talking about two different systems entails keeping track of four different
basis triads. To help with this book-keeping nightmare, we will now refer to the first system
as the “A” system and the other system as the “B” system. Each contravariant index (which is
a superscript) will be accompanied by a subscript (either A or B) to indicate which system the
index refers to. Likewise, each covariant index (a subscript) will now be accompanied by a
superscript (A or B) to indicate the associated system. You should regard the system indicator
(A or B) to serve the same sort of role as the “dot placeholder” discussed on page 16 — they
are not indices. With this convention, we may now say

 are the covariant base vectors for system-A (4.2)

 are the contravariant base vectors for system-A (4.3)

 are the covariant base vectors for system-B (4.4)

 are the contravariant base vectors for system-B (4.5)
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A g
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A, ,{ }
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The system flag, A or B, acts as a “dot-placeholder” and moves along with its associated index
in operations. Now that we are dealing with up to four basis triads, the components of vectors
must also be flagged to indicate the associated basis. Hence, depending on which of the above
four bases are used, the basis expansion of a vector can be any of the following:

(4.6)

(4.7)

(4.8)

(4.9)

Keep in mind that the system label (A or B) is to be regarded as a “dot-placeholder,” not an
implicitly summed index. The metric coefficients for any given system are defined in the
usual way and the Kronecker delta relationship between contravariant and covariant base
vectors within a single system still holds. Specifically,

(4.10)

(4.11)

(4.12)

(4.13)

In previous chapters (which dealt with only a single system), we showed that the matrix con-
taining the  components could be obtained by inverting the  matrix. This relationship
still holds within each individual system (A or B) listed above. Namely, 

(4.14)

(4.15)

Now that we are considering two systems simultaneously, we can further define new
matrices that inter-relate the two systems:

(4.16a)

(4.16b)

(4.16c)

(4.16d)
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Partial Answer: (a) , , , .

(b) , , , 

(c) , , , ,

, , , 

From the commutativity of the dot product, Eq. (4.16) implies that

, , , and . (4.17)

System metrics (i.e., “g” matrices that involve AA or BB) are components of a tensor (the iden-
tity tensor). Coupling matrix components (i.e., ones that involve A and B) are not components
of a tensor — instead, a coupling matrix characterizes interrelationship between two bases. 

 Study Question 4.1 Consider the following irregular base vectors (the A-system):

and 

Additionally consider a second B-system:

and 

(a) Find the contravariant and covariant met-
rics for each individual system.

(b) Find the contravariant basis for each indi-
vidual system.

(c) Directly apply Eq. (4.16) to find the cou-
pling matrices. Then verify that .
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The first relationship in Eq. (4.17) does not say that the matrix containing  is symmet-
ric. Instead this equation is saying that the matrix containing  may be obtained by the
transpose of the different matrix that contains . Given a “g” matrix of any type, you can
transform it immediately to other types of g-matrices by using the following rules:

• To exchange system labels (A or B) left-right, apply a transpose.
• To exchange system labels (A or B) up-down, apply an inverse.
• To exchange system labels (A or B) along a diagonal, apply an inverse transpose.

For example, if  is available, then

, (4.18)

Similarly, if  is available, then

, (4.19)

Here, and in all upcoming matrix equations involving “g” components, a star (*) is inserted
where indices normally reside in indicial equations. These equations show how to move two
system labels simultaneously. 

To move only one system label to a new location, you need a matrix product. In matrix
products, abutting system labels must be on opposite levels (the system labels are not
summed — index rules apply only to indicial expressions, not to matrix expressions. For
example, what operation would you need to move only the “B” label in  from the bot-
tom to the top? The answer is that you need to use the B-system metric as follows:

  (this is the matrix form of ) (4.20)

This behavior also applies to transforming bases. For example,

(4.21)

All of the “g” matrices may be obtained only from knowledge of one system metric (same sys-
tem labels) and one coupling matrix (different system labels).
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gij
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gij
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gij
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** g**
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BB[ ] gB*
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Partial Answer: (a) We are given a regular metric and a mixed coupling matrix. Start by expressing

 as the product of any AB matrix times a BB metric times a BA matrix: .

We now need to get  expressed in terms of the given coupling matrix . In other words, we

need to swap A and B along the diagonal, which requires an inverse-transpose: . Next,

we need to express the coupling matrix  in terms of the given coupling matrix . This requires

only an up-down motion of the system labels, so that’s just an inverse: . Putting it all

back in the first equation gives 

(b) . The matrix in this relation is . Therefore

, , and .

(c) is similar.

 Study Question 4.2 Suppose you are studying a problem involving two bases, A and 
B, and you know one system metric  and one coupling matrix  as follows:

and  (4.22)

(a) Find  and 

(b) Express the  base vectors in terms of the  base vectors.

(b) Express the  base vectors in terms of the  base vectors.
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We showed in previous sections how the covariant components of a vector are related to
the contravariant components from the same system. For example, we showed that 
when considering only one system. When considering more than one basis at a time, this
result needs to explicitly show the system (A or B) flags:

(4.23)

(4.24)

These equations show how to transform components within a single system. To transform com-
ponents from one system to another, the formulas are

(4.25)

(4.26)

Equivalently,

(4.27)

(4.28)

Tensor transformations are similar. For example

 and (4.29)

These formulas are constructed one index position at a time. In the last formula, for example,
the first free index position on the T is the pair . On the other side of the equation, the first
index pair on the T is . Because  is a dummy summed index, the “g” must have . Thus,
the first “g” is a combination of the free index pair on the left side and the “flipped” index pair
on the right . The “T” in the above equations may be moved to the middle if you like it
better that way:

 and (4.30)

If you wanted to write these as matrix equations, you can write them in a way that
dummy summed indices are abutting, keeping in mind that the g components are unchanged
when indices along with their system label are moved left-to-right. The g components require an
inverse on their matrix forms to move system labels up-down. Thus, the matrix forms for
these transformation formulas are

 and (4.31)

Numerous matrix versions of component transformation formulas may be written. In this
case, we wrote the matrix expressions on the assumption that the known coupling and metric
matrices were  and .
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Partial Answer: (a) , , , , , , , .

(b) The first third and fourth results of part (a) imply that . Drawing grid

lines parallel to  and , the path from the origin to the tip of vector  may be reached by first tra-

versing along a line segment equal to , and then moving anti-parallel to to reach the tip.

(c) Using results from study question 4.1,  becomes in matrix form .

Multiplying this out verifies that it is true.
(d) The answer is .

 Study Question 4.3 Consider the same irregular base vectors in Study Question 4.1. 
Namely,

and 

and

and 

Let .

(a) Determine the covariant and contravari-
ant components of  with respect to sys-
tems A and B. (i.e., find ).

(b) Demonstrate graphically that your
answers to part (a) make sense.

(c) Verify the following: 

(d) Fill in the question marks to make the following equation true:
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Coordinate transformations A principal goal of this chapter is to show how the  compo-
nents must be related to the  components. We are seeking component transformations
resulting from a change of basis. Strictly speaking, coordinates may always be selected inde-
pendently from the basis. This, however, is rarely done. Usually the basis is taken to be
defined to be the one that is naturally defined by the coordinate system grid lines. The natural
covariant basis co-varies with the coordinates — i.e., each covariant base vector always points
tangent to the coordinate a grid line and has a length that varies in proportion to the grid
spacing density. The natural contravariant basis contra-varies with the grid — i.e., each con-
travariant base vector points normal to a surface of constant coordinate value. When people
talk about component transformations resulting from a change in coordinates, they implicitly
assuming that the basis is coupled to the choice of coordinates. There is an unfortunate
implicit assumption in many publications that vector and tensor components must be coupled
to the spatial coordinates. In fact, it’s fine to use a basis that is selected entirely independently
from the coordinates. For example, to study loads on a ferris wheel, you might decide to use a
fixed Cartesian basis that is aligned with gravity, while also using cylindrical  coordi-
nates to identify points in space.

Spatial coordinates are any three numbers that uniquely define a location in space. For
example, Cartesian coordinates are frequently denoted , cylindrical coordinates are

, and so on. Any quantity that is known to vary in space can be written as a function
of the coordinates. Coordinates uniquely define the position vector , but coordinates are not
the same thing as components of the position vector. For example, the position vector in cylin-
drical coordinates is . Notice that position vector is not . The
components of the position vector are , not . The position vector has only
two nonzero components. It has no  term. Does this mean that the position vector depends
only on  and ? Nope. The position vector’s dependence on  is buried implicitly in the
dependence of  on . 

Whether the basis is chosen to be coupled to the coordinates is entirely up to you. If conve-
nient to do so (as in the ferris wheel example), you might choose to use cylindrical coordinates
but a Cartesian basis so that the position vector would be written

. In this case, the chosen basis is the Cartesian laboratory
basis , which is entirely uncoupled from the coordinates .

To speak in generality, we will denote the three spatial coordinates by . If, for
example, cylindrical coordinates are used, then , , and . If spherical
coordinates are used, then , , and . If Cartesian coordinates are used,
then , , and .
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The position vector is truly a function of all three  coordinates. The basis can
be selected independently from the choice of coordinates, However, we can always define the
natural basis [12] that is associated with the choice of coordinates by

(4.32)

The  natural covariant base vector  equals the derivative of the position vector  with
respect to the  coordinate. Hence, this base vector points in the direction of increasing 
and it is tangent to the grid line along which the other two coordinates remain constant.
Examples of the natural basis for various coordinate systems are provided in Section 5.3. The
natural basis defined in Eq. (4.32) is clearly coupled to the coordinates themselves. Conse-
quently, a change in coordinates will result in a change of the natural basis. Thus, the compo-
nents of any vector expressed using the natural basis will change upon a change in
coordinates. Having the basis be coupled to the coordinates is a choice. One can alternatively
choose the basis to be uncoupled from the coordinates (see the discussion of non-holonomic-
ity in Ref. [12]).

Each particular value of the coordinates  defines a unique location  in space.
Conversely, each location in space corresponds to a unique set of  coordinates.
That means the coordinates themselves can be regarded as functions of the position vector,
and we can therefore take the spatial gradients of the coordinates. As further explained in Sec-
tion 5.3, the contravariant natural base vector is defined to equal these coordinate gradients:

(4.33)

Being the gradient of , the contravariant base vector  must point normal to surfaces of
constant . Proving that these are indeed the contravariant base vectors associated with the
covariant natural basis defined in Eq. (4.32) is simply a matter of applying the chain rule to
demonstrate that  comes out to equal the Kronecker delta:

(4.34)

The metric coefficients corresponding to Eq. (4.32) are

(4.35)

Many textbooks present this result in pure component form by writing the vector  in terms
of its cartesian components as  so that the above expression becomes

for the natural basis (4.36)
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When written this way, it’s important to recognize that  are the Cartesian components of the
position vector (not the covariant components with respect to an irregular basis). That’s why
we introduced the summation in Eq. (4.36) -- otherwise, we would be violating the high-low
rule of the summation conventions.

Similarly, the contravariant metric coefficients are

for the natural basis (4.37)

These are the expressions for the metric coefficients when the natural basis is used. Let us reit-
erate that there is no law that says the basis used to described vectors and tensors must neces-
sarily be coupled to the choice of spatial coordinates in any way. We cite these relationships to
assist those readers who wish to make connections between our own present formalism and
other published discourses on curvilinear coordinates. 

In the upcoming discussion of coordinate transformations, we will not assume that the
metric coefficients are given by the above expressions. Because our transformation equations
will be expressed in terms of metrics only, they will apply even when the chosen basis is not
the natural basis. When we derive the component transformation rules, we will include both
the general basis transformation expression and its specialization to the case that the basis is
chosen to be the natural basis.

4.1 What is a vector? What is a tensor?
The bane of many rookie graduate students is the common qualifier question: “what is a

vector?” The frustration stems, in part, from the fact that the “correct” answer depends on
who is doing the asking. Different people have different answers to this question. More than
likely, the professor follows up with the even harder question “what is a tensor?”

Definition #0 (used for undergraduates): A college freshman is typically told that a vector
is something with length and direction, and nothing more is said (certainly no mention is
made of tensors!). The idea of a tensor is tragically withheld from most undergraduates.

Definition #1 (classical, but our least favorite): Some professors merely want their stu-
dent to say that there are two kinds of vectors: A contravariant vector is a set of three numbers

 that transform according to  when changing from an “A-basis” to a
“B-basis”, whereas a covariant vector is a set of three numbers  that transform
such that . These professors typically wish for their students to define four differ-
ent kinds of tensors, the contravariant tensor being a set of nine numbers that transform
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according to , the mixed tensors being ones whose components transform
according to  or , etc.

Definition #2 (our preference for ordinary engineering applications): We regard a vec-
tor to be an entity that exists independent of our act of observing it — independent of our act
of representing it quantitatively. Of course, to decide if something is an engineering vector,
we demand that it must nevertheless lend itself to a quantitative representation as a sum of
three components  times1 three base vectors , and we test whether or
not we have a vector by verifying that  holds upon a change of basis. The base
vectors themselves are regarded as abstractions defined in terms of geometrical fundamental
primitives. Namely, the base vectors are regarded as directed line segments between points in
space, which are presumed (by axiom) to exist. The key distinction between definition #2 and
#1 is that definition #2 makes no distinction between covariant vectors and contravariant vec-
tors. Definition #2 instead uses the terms “covariant components” and “contravariant compo-
nents” — these are components of the same vector.

Recall that definition of a second-order tensor under our viewpoint required introduction of
new objects, called dyads, that could be constructed from vectors. From there, we asserted
that any collection of nine numbers could be assembled as a sum of these numbers times basis
dyads . A tensor would then be defined as any linear combination of tensor dyads for
which the coefficients of these dyads (i.e., the tensor components) follow the transformation
rules outlined in the preceding section.

Definition #3 (for mathematicians or for advanced engineering) Mathematicians define
vectors as being “members of a vector space.” A vector space must comprise certain basic components:

A1.  A field R must exist. (For engineering applications, the field is the set of reals.)
A2.  There must be a discerning definition of membership in a set V.
A3.  There must be a rule for multiplying a scalar  times a member  of V. Furthermore, this 

multiplication rule must be proved closed in : 
If  and  then 

A4.  There must be a rule for adding two members of V. 
Furthermore, this vector addition rule must be proved closed in :
If  and  then 

A5.  There must be a well defined process for determining whether two members of  are equal.
A6.  The multiplication and addition rules must satisfy the following rules:

•  and 
•

•There must exist a zero vector  such that .

1. The act of multiplying a scalar times a vector is presumed to be well defined and to satisfy the rules outlined in 
definition #3.
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Unfortunately, textbooks seem to fixate on item A6, completely neglecting the far more subtle and dif-
ficult items A2, A3, A4, and A5. Engineering vectors are more than something with length and direc-
tion. Likewise, engineering vectors are more than simply an array of three numbers. When people
define vectors according to the way their components change upon a change of basis (definitions #1 and
#2), they are implicitly addressing axiom A2. Our “definition #2” is a special case of this more general
definition. In general, axiom A2 is the most difficult axiom to satisfy when discussing specific vector
spaces.

Whenever possible, vector spaces are typically supplemented with the definition of an inner product
(here denoted ), which is a scalar-valued binary1 operation between two vectors,  and , that
must satisfy the following rules:

A7.  
A8.   if  and  only if .

An inner product space is just a vector space that has an inner product.

Partial Answer: (a) You may assume that the set of reals constitutes an adequate field, but you
may obtain a careful definition of the term “field” in Reference [6]. In order to deal with axiom A2, you
will need to locate a carefully crafted definition of what it means to be a “real valued continuous func-

1.The term “binary” is just an fancy way of saying that the function has two arguments.
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 Study Question 4.4 
(a) Apply definition #3 to prove that the set of all real-valued continuous functions of 
one variable (on a domain being reals) is a vector space.
(b) Suppose that  and  are members of this vector space. Prove that the scalar-valued 
functional 

(4.38)

is an acceptable definition of the inner product, .
(c) Explain what a Taylor-series expansion  has in common with a basis expansion
( ) of a vector. A Fourier-series expansion is related to the Taylor series in a
way that is analogous to what operation from ordinary vector analysis in 3D space?
(d) Explain how the binary function  is analogous to the dyad  from conven-
tional vector/tensor analysis.
(e) Explain why the dummy variables  and  play roles similar to the indices  and 
(f) Explain why a general binary function  is analogous to a conventional tensor
components .
(g) Assuming that the goal of this document is to give you greater insight into vector
and tensor analysis in 3D space, do you think this problem contributes toward that
goal? Explain?
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tion of one (real) variable” [see References 8, 9, or 10 if you are stumped]. (b) Demonstrate that axioms
A7 and A8 hold true. (c) The Taylor series expansion writes a function as a linear combination of more
simple functions, namely, the powers , for  ranging from 0 to . The Fourier series expansion
writes a function as a linear combination of trigonometric functions. (d) The dyad  has components

, where the indices  and  range from 1 to 3. The function f(x)g(y) has values defined for values of
the independent variables  and  ranging from  to . A dyad  is the most primitive of tensors,
and it is defined such that it has no meaning (other than book-keeping) unless it operates on an arbi-
trary vector so that  means . Likewise, we can define the most primitive function of two
variables, f(x)g(y) so that it takes on meaning when appearing in an operation on a general function

 so that f(x)g(y) is defined so that it means . (e) see pre-
vious answer (f).

When addressing the question of whether or not something is indeed a tensor, you must
commit yourself to which of the definitions discussed on page 55 you wish to use. When we
cover the topic of curvilinear calculus, we will encounter the Christoffel symbols  and .
These three-index quantities characterize how the natural curvilinear basis varies in space.
Their definition is based upon your choice of basis, . Naturally it stands to reason
that choosing some other basis will still permit you to construct Christoffel symbols for that
system. Any review of the literature will include a statement that the Christoffel symbols “are
not third-order tensors.” This statement merely means that

(4.39)

Note that it is perfectly acceptable for you to construct a distinct tensors defined

and (4.40)

Equation (4.39) tells us that these two tensors are not equal. That is,

(4.41)

Stated differently, for each basis, there exists a basis-dependent Christoffel tensor. This should
not be disturbing. After all, the base vectors themselves are, by definition, basis-dependent, but
that doesn’t mean they aren’t vectors. Changing the basis will change the associated Christof-
fel tensor. A particular choice for the basis is itself (of course) basis dependent -- change the
basis, and you will (obviously) change the base vectors themselves. You can always construct
other vectors and tensors from the basis, but you would naturally expect these tensors to
change upon a change of basis if the new definition of the tensor is defined the same as the old
definition except that the new base vectors are used. What’s truly remarkable is that there
exist certain combinations of base vectors and basis-referenced definitions of components that
turn out to be invariant under a change of basis.
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Consider two tensors constructed from the metrics  and :

and (4.42)

These two tensors, it turns out, are equal even though they were constructed using different
bases and different components! Even though  and even though , it turns
out that the differences cancel each other out in the combinations defined in Eq. (4.42) so that
both tensors are equal. In fact, as was shown in Eq. (3.18), these tensors are simply the identity
tensor! 

(4.43)

This is an exceptional situation. More often than not, when you construct a tensor by mul-
tiplying an ordered array of numbers by corresponding base vectors in different systems, you
will end up with two different tensors. To clarify, suppose that  is a function (scalar, vector,
or tensor valued) which can be constructed from the basis. Presume that the same function can
be applied to any basis, and furthermore presume that the results will be different, so we
must denote the results by different symbols.

 and if (4.44)

In the older literature, the components of  were called tensor if and only if . In
more modern treatments, the function  is called basis invariant if , whereas the
function f is basis-dependent if . These two tensors are equal only if the components of

 with respect to one basis happen to equal the components of  with respect to the same
basis. It’s not uncommon for two distinct tensors to have the same components with respect
to different bases — such a result would not imply equality of the two tensors.

4.2 Coordinates are not the same thing as components
All base vectors in this section are to be regarded as the natural basis so that they are

related to the coordinates  by . Recall that we have typeset the three coordi-
nates as . Despite this typesetting, these numbers are not contravariant components of any
vector . By this we mean that if you compare a different set of components  from a second
system, they are not generally related to the original set of components via a vector transfor-
mation rule. We may only presume that transformation rules exist such that each  can be
expressed as a function of the  coordinates. If coordinates were also vector components,
then they would have to be related by a transformation formula of the form

  valid for homogeneous, but not curvilinear coordinates (4.45)

A coordinate transformation of this form is a linear, which holds only for homogenous (i.e.,
non-curvilinear) coordinate systems. Even though the  coordinates are not generally com-

gij
AA gij

BB

G
˜̃

AA gij
AAg

˜ A
i g

˜ A
j= G

˜̃
BB gij

BBg
˜ B

i g
˜ B

j=

g
˜ A

i g
˜ B

i≠ gij
AA gij

BB≠

G
˜̃

AA G
˜̃

BB I
˜̃

= =

f

FA f g
˜ 1

A g
˜ 2

A g
˜ 3

A, ,( )= FB f g
˜ 1

B g
˜ 2

B g
˜ 3

B, ,( )=

FA FA FB=
f FA FB=

FA FB≠
FA FB

ηk g
˜ k ∂x

˜
∂ηk⁄=

ηk

η
˜

ηk

ηk

ηm

ηk ∂ηk

∂ηm
----------ηm=   ←

ηk



rmbrann@me.unm.edu http://me.unm.edu/~rmbrann/gobag.html DRAFT June 17, 2004 60
ponents of a vector, their increments  do transform like vectors. That is, 

  this is true for both homogenous and curvilinear coordinates! (4.46)

For curvilinear systems, the transformation formulas that express coordinates  in terms of
 are nonlinear functions, but their increments are linear for the same reason that the incre-

ment of a nonlinear function  is an expression that is linear with respect to incre-
ments: . Geometrically, at any point on a curvy line, we can construct a straight
tangent to that line.

4.3 Do there exist a “complementary” or “dual” coordinates?
Recall that the coordinates are typeset as . We’ve explained that the coordinate incre-

ments  transform as vectors even though the coordinates themselves are not components
of vectors. The  increments are the components of the position increment vector . In
other words,

(4.47)

To better emphasize the order of operation, we should write this as

(4.48)

On the left side, we have the  component of the vector differential, whereas on the right
side we have the differential of the  coordinate. 

The covariant component of the position increment is well-defined:

(4.49)

Looking back at Eq. (4.48), natural question would be: is it possible to define complementary
or dual coordinates  that are related to the baseline coordinates  such that

  this is NOT possible in general (4.50)

We will now prove (by contradiction) that such dual coordinates do not generally exist. If
such coordinates did exist, then it would have to be true that 

(4.51)

For the  to exist, this equation would need to be integrable. In other words, the expression
 would have to be an exact differential, which means that the metrics would have to

be given by

(4.52)
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and therefore, the second partials would need to be interchangeable:

(4.53)

This constraint is not satisfied by curvilinear systems. Consider, for example, cylindrical coor-
dinates, , where the metric matrix is

(4.54)

Note that 

, but (4.55)

Hence, since these are not equal, the integrability condition of Eq. (4.53) is violated and there-
fore there do not exist dual coordinates.
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5.  Curvilinear calculus
Chapter 3 focused on algebra, where the only important issue was the possibility that the

basis might be irregular (i.e., nonorthogonal, nonnormalized, and/or non-right-handed). In
that chapter, it made no difference whether the coordinates are homogeneous or curvilinear.
For homogeneous coordinates (where the base vectors are the same at all points in space), ten-
sor calculus formulas for the gradient are similar to the formulas for ordinary rectangular
Cartesian coordinates. By contrast, when the coordinates are curvilinear, there are new addi-
tional terms in gradient formulas to account for the variation of the base vectors with posi-
tion. 

5.1 A introductory example
Before developing the general curvilinear theory, it is useful to first show how to develop

the formulas without using the full power of curvilinear calculus. Suppose an engineering
problem is most naturally described using cylindrical coordinates, which are related to the
laboratory Cartesian coordinates by

, , . (5.1)

The base vectors for cylindrical coordinates are related to the lab base vectors by

. (5.2)

Suppose you need the gradient of a scalar, . If s is written as a function of , then
the familiar Cartesian formula applies:

. (5.3)

Because curvilinear coordinates were selected, the function  is probably simple in
form. If you were a sucker for punishment, you could substitute the inverse relationships,

, , . (5.4)

Then you’d have the function , with which you could directly apply Eq. (5.3). This
approach is unsatisfactory for several reasons. Strictly speaking, Eq. (5.4) is incorrect because
the arctangent has two solutions in the range from 0 to ; the correct formula would have to
be the two-argument arctangent. Furthermore, actually computing the derivative would be
tedious, and the final result would be expressed in terms of the lab Cartesian basis instead of
the cylindrical basis.
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The better approach is to look at the problem from a more academic slant by applying the
chain rule. Given that  then

, (5.5)

where the subscripts indicate which variables are held constant in the derivatives. The deriva-
tives of the cylindrical coordinates with respect to  can be computed a priori. For example,
the quantity  is the gradient of . Physically, we know that the gradient of a quantity is
perpendicular to surfaces of constant values of that quantity. Surfaces of constant  are cylin-
ders of radius , so we know that  must be perpendicular to the cylinder. In other
words, we know that  must be parallel to . The gradients of the cylindrical coordi-
nates are obtained by applying the ordinary Cartesian formula:

. (5.6)

We must determine these derivatives implicitly by using Eqs. (5.1) to first compute the
derivatives of the Cartesian coordinates with respect to the cylindrical coordinates. We can
arrange the nine possible derivatives of Eqs. (5.1) in a matrix:

. (5.7)

The inverse derivatives are obtained inverting this matrix to give

. (5.8)
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Substituting these derivatives into Eq. (5.6) gives

. (5.9)

Referring to Eq. (5.2) we conclude that

This result was rather tedious to derive, but it was a one-time-only task. For any coordinate
system, it is always a good idea to derive the coordinate gradients and save them for later use.

Now that we have the coordinate gradients, Eq. (5.5) becomes

, (5.11)

where the commas are a shorthand notation for derivatives. This is the formula for the gradi-
ent of a scalar that you would find in a handbook.

The above analysis showed that high-powered curvilinear theory is not necessary to
derive the formula for the gradient of a scalar function of the cylindrical coordinates. All
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that’s needed is knowledge of tensor analysis in Cartesian coordinates. However, for more
complicated coordinate systems, a fully developed curvilinear theory is indispensable. 

5.2 Curvilinear coordinates
In what follows, three coordinates  are pre-

sumed to identify the position of a point  in space. These
coordinates are identified with superscripts merely by con-
vention. As sketched in Figure 5.1, the associated base vectors
at any point in space are tangent to the grid lines at that point. The base vector  points in
the direction of increasing . Importantly, the position vector  is not generally equal to

. For example, the position vector for spherical coordinates is simply  (not
); for spherical coordinates, the dependence of the position vector on the

coordinates  and  is hidden in dependence of  on  and .

5.3 The “associated” curvilinear covariant basis
Given three coordinates  that identify the location in space, the associated

covariant base vectors are defined to be tangent to the grid lines along which only one coordi-
nate varies (the others being held constant). By definition, the three coordinates 
identify the position in space:

; i.e.,  is a function of , , and . (5.12)

The ith covariant base vector is defined to point in the direction that  moves when  is
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FIGURE 5.1 Curvilinear covariant basis. The covariant base
vectors are tangent to the grid lines associated with . Different
base vectors are used at different locations in space because the grid
itself varies in space. The lengths of the covariant base vectors “co-
vary” with the coordinate. Each unit change in the coordinate
corresponds to a specific change in the position vector, and the
covariant basis has a length equal to the change in position per unit
change in coordinate.
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increased, holding the other coordinates constant. Hence, the natural definition of the ith cova-
riant basis is the partial derivative of  with respect to :

. (5.13)

Note the following new summation convention: the superscript on  is interpreted as a sub-
script in the final result because  appears in the “denominator” of the derivative. 

Note that the natural covariant base vectors are not necessarily unit vectors. Furthermore,
because the coordinates  do not necessarily have the same physical units, the nat-
ural base vectors themselves will have different physical units. For example, cylindrical coor-
dinates  have dimensions of length, radians, and length, respectively. Consequently,
two of the base vectors (  and ) are dimensionless, but  has dimensions of length. Such
a situation is not unusual and should not be alarming. We will find that the components of a
vector will have physical dimensions appropriate to ensure that the each term in the sum of
components times base vectors will have the same physical dimensions as the vector itself.
Again this point harks back to the fact that neither components nor base vectors are invariant,
but the sum of components times base vectors is invariant.

Equation (5.12) states that the coordinates uniquely identify the position in space. Con-
versely, any position in space corresponds to a unique set of coordinates. That is, each coordi-
nate may be regarded as a single-valued function of position vector:

. (5.14)

By the chain rule, note that

. (5.15)

Therefore, recalling Eq. (5.13), the contravariant dual basis must be given by

. (5.16)

This derivative is the spatial gradient of . Hence, as
sketched in Fig. 5.2, each contravariant base vector  is
normal to surfaces of constant , and it points in the
direction of increasing .

Starting with Eq. (5.12), the increment in the position
vector is given by

, (5.17)

x
˜

η i

g
˜ i

∂x
˜

∂ηi
--------≡

ηi

ηi

η1 η2 η3, ,{ }

r θ z, ,{ }
g
˜ 1 g

˜ 3 g
˜ 2

ηj η j x
˜
( )=

dη j

dx
˜

-------- ∂x
˜

∂η i
--------• ∂η j

∂η i
-------- δi

j= =

η1

η2

FIGURE 5.2 Curvilinear contravariant 
basis. The contravariant base vectors are
normal to surfaces of constant .ηk

x
˜

g
˜

1

g
˜

2
g
˜

j ∂η j

∂x
˜

--------≡

ηj

g
˜

j

η j

η j

dx
˜

∂x
˜

∂ηk
---------dηk=
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or, recalling Eq. (5.13), 

. (5.18)

Now we note a key difference between homogeneous and curvilinear coordinates:

ix. For homogeneous coordinates, each of the  base vectors is same
throughout space — they are independent of the coordinates

. Hence, for homogeneous coordinates, Eq. (5.18) can be
integrated to show that . 

x. For curvilinear coordinates, each  varies in space — they depend on
the coordinates . Hence, for curvilinear coordinates,
Eq. (5.18) does not imply that . 

EXAMPLE Consider cylindrical coordinates: , ,  .

Figure 5.3 illustrates how, for simple enough coordinate systems, you can determine the cova-
riant base vectors graphically. Recall that  and therefore that  is the
coefficient of  when  is varied by differentially changing  holding  and  con-
stant. For cylindrical coordinates, when the radial coordinate, , is varied holding the oth-
ers constant, the position vector  moves such , and therefore  must equal 
because it is the coefficient of . Similarly,  must be equal to  since that is the coeffi-
cient of  in  when the second coordinate, , is varied holding the others constant.
Summarizing,

, , and . (5.19)

To derive these results analytically (rather than geometrically), we utilize the underlying rect-

dx
˜

dηk g
˜ k=

g
˜ k

η1 η2 η3, ,{ }
x
˜

ηk g
˜ k=

g
˜ k

η1 η2 η3, ,{ }
x
˜

ηk g
˜ k=

η1=r η2=θ η3=z

e
˜ r

e
˜ θ

e
˜ z

θ r

z

x1

x2

x3

x
˜

x
˜

r e
˜ r θ( ) ze

˜ z+=

x
˜

dx
˜
=dre

˜ r

x
˜

dx
˜
=rdθe

˜ θ

Here we vary r  

FIGURE 5.3 Covariant basis for cylindrical coordinates. The views down the -axis show how the covariant base
vectors can be determined graphically by varying one coordinate, holding the others constant.

z

holding θ  and z  constant
Here we vary θ 

holding r  and z  constant

x1 x1

x2 x2

g
˜ 1 ∂x

˜
∂η1⁄( )η2 η3,= g

˜ 1
dη1 x

˜
η1 η2 η3

η1=r
x
˜

dx
˜

dre
˜ r= g

˜ 1 e
˜ r

dr g
˜ 2 re

˜ θ
dθ dx

˜
η2=θ

g
˜ 1 e

˜ r= g
˜ 2 re

˜ θ
= g

˜ 3 e
˜ z=
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angular Cartesian basis  to write the position vector as 

, (5.20)

where

(5.21a)
(5.21b)

. (5.21c)

Then

(5.22a)

(5.22b)

. (5.22c)

which we note is equivalent to the graphically derived Eqs. (5.19). Also note that  and 
are dimensionless, whereas  has physical dimensions of length.

The metric coefficients  for cylindrical coordinates are derived in the usual way:

(5.23a)

(5.23b)
, (5.23c)

or, in matrix form, 

. ← cylindrical coordinates (5.24)

Whenever the metric tensor comes out to be diagonal as it has here, the coordinate system is
orthogonal and the base vectors at each point in space are mutually perpendicular. Inverting
the covariant  matrix gives the contravariant metric coefficients:

. ← cylindrical coordinates (5.25)

e
˜ 1 e

˜ 2 e
˜ 3, ,{ }

x
˜

x1e
˜ 1 x2e

˜ 2 x3e
˜ 3+ +=

x1 r θcos=
x2 r θsin=
x3 z=

g
˜ 1

∂x
˜∂r

------ 
 

θ z,

∂x1
∂r
-------- 
 

θ z,
e
˜ 1

∂x2
∂r
-------- 
 

θ z,
e
˜ 2

∂x3
∂r
-------- 
 

θ z,
e
˜ 3+ + θcos e

˜ 1 θe
˜ 2sin+= = =

g
˜ 2

∂x
˜∂θ

------ 
 

r z,

∂x1
∂θ
-------- 
 

r z,
e
˜ 1

∂x2
∂θ
-------- 
 

r z,
e
˜ 2

∂x3
∂θ
-------- 
 

r z,
e
˜ 3+ + r θsin e

˜ 1– r θcos e
˜ 2+= = =

g
˜ 3

∂x
˜∂z

------ 
 

r θ,

∂x1
∂z
-------- 
 

r θ,
e
˜ 1

∂x2
∂z
-------- 
 

r θ,
e
˜ 2

∂x3
∂z
-------- 
 

r θ,
e
˜ 3+ + e

˜ 3= = =

g
˜ 1 g

˜ 3
g
˜ 2

gij

g11 g
˜ 1 g

˜ 1• 1= = g12 g
˜ 1 g

˜ 2• 0= = g13 g
˜ 1 g

˜ 3• 0= =

g12 g
˜ 2 g

˜ 1• 0= = g22 g
˜ 2 g

˜ 2• r2= = g23 g
˜ 2 g

˜ 3• 0= =
g31 g

˜ 3 g
˜ 1• 0= = g32 g

˜ 3 g
˜ 2• 0= = g33 g

˜ 3 g
˜ 3• 1= =

gij[ ]
1 0 0
0 r2 0
0 0 1

=

gij[ ]

gij[ ]
1 0 0
0 1 r2⁄ 0
0 0 1

=
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The contravariant dual basis can be derived in the usual way by applying the formula of
Eq (2.18):

(5.26a)

(5.26b)

. (5.26c)

With considerably more effort, we can alternatively derive these results by directly applying
Eq. (5.16). To do this, we must express the coordinates  in terms of :

(5.27a)

(5.27b)

. (5.27c)

Then applying Eq. (5.16) gives

(5.28a)

(5.28b)

. (5.28c)

which agrees with the previous result in Eq. (5.26).

Because the curvilinear basis  associated with cylindrical coordinates is
orthogonal, the dual vectors  are in exactly the same directions but have different
magnitudes. It is common practice to use the associated orthonormal basis  as we
have in the above equations. This practice also eliminates the sometimes confusing complica-
tion of dimensional base vectors. When a coordinate system is orthogonal, the shared
orthonormal basis is called the “physical basis.” Notationally, vector components 
or  are defined  and , respectively. Because cylindrical coor-
dinates are orthogonal, it is conventional to also define so-called “physical components” with
respect to the orthonormalized cylindrical basis. 

For cylindrical coordinates, the physical components are denoted . Whenever
you derive a formula in terms of the general covariant and contravariant vector components,

g
˜

1 g11g
˜ 1 g12g

˜ 2 g13g
˜ 3+ + g

˜ 1 e
˜ r= = =

g
˜

2 g21g
˜ 1 g22g

˜ 2 g23g
˜ 3+ +

g
˜ 2

r2
-----

e
˜ θ
r

-----= = =

g
˜

3 g31g
˜ 1 g32g

˜ 2 g33g
˜ 3+ + g

˜ 3 e
˜ z= = =

r θ z, ,{ } x1 x2 x3, ,{ }

r x1
2 x2

2+=

θ tan 1–
x2
x1
----- 
 =

z x3=

g
˜

1 dr
dx

˜
------ ∂r

∂x1
--------e

˜ 1
∂r
∂x2
--------e

˜ 2
∂r
∂x3
--------e

˜ 3+ +
x1
r
-----e

˜ 1
x2
r
-----e

˜ 2+ θcos e
˜ 1 θsin e

˜ 2+ e
˜ r= = = = =

g
˜

2 dθ
dx

˜
------ ∂θ

∂x1
--------e

˜ 1
∂θ
∂x2
--------e

˜ 2
∂θ
∂x3
--------e

˜ 3+ +
x2–

x1
2

-------- 
  cos2θe

˜ 1
1
x1
----- 
  cos2θe

˜ 2+ 1
r
---e

˜ θ
= = = =

g
˜

3 dz
dx

˜
------ ∂z

∂x1
--------e

˜ 1
∂z
∂x2
--------e

˜ 2
∂z
∂x3
--------e

˜ 3+ + e
˜ 3 e

˜ z= = = =

g
˜ 1 g

˜ 2 g
˜ 3, ,{ }

g
˜

1 g
˜

2 g
˜

3, ,{ }
e
˜ r e

˜ θ
e
˜ z, ,{ }

v1 v2 v3, ,{ }
v1 v2 v3, ,{ } vk g

˜ k v
˜

•≡ vk g
˜

k v
˜

•≡

vr vθ vz, ,{ }
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it’s a good idea to convert the final result to physical coordinates and the physical basis. For
cylindrical coordinates, these conversion formulas are:

(5.29a)

(5.29b)

. (5.29c)

v1 g
˜ 1 v

˜
• e

˜ r v
˜

• vr= = = v1 g
˜

1 v
˜

• e
˜ r v

˜
• vr= = =

v2 g
˜ 2 v

˜
• re

˜ θ
( ) v

˜
• rvθ= = = v2 g

˜
2 v

˜
• 1

r
---e

˜ θ 
  v

˜
•

vθ
r
-----= = =

v3 g
˜ 3 v

˜
• e

˜ z v
˜

• vz= = = v3 g
˜

3 v
˜

• e
˜ z v

˜
• vz= = =

 Study Question 5.1 For spherical coordinates, , the underlying rectan-
gular Cartesian coordinates are

(5.30a)
(5.30b)

. (5.30c)

(a) Follow the above example to prove that the covariant basis for spherical coordinates is

, where (5.31a)
, where (5.31b)

where . (5.31c)

(b) Prove that the dual contravariant basis for spherical coordinates is

, (5.32a)

, (5.32b)

. (5.32c)

(c) As was done for cylindrical coordinates in Eq. (5.29) show that the spherical covariant
and contravariant vector components are related to the spherical “physical” components by

(5.33a)

(5.33b)

. (5.33c)

η1=r η2=θ η3=φ, ,{ }

x1 r θsin φcos=
x2 r θsin φsin=
x3 r θcos=

g
˜ 1 e

˜ r= e
˜ r θsin φcos e

˜ 1 θsin φsin e
˜ 2 θcos e

˜ 3+ +=
g
˜ 2 re

˜ θ
= e

˜ θ
θcos φcos e

˜ 1 θ φsincos e
˜ 2 θsin e

˜ 3–+=
g
˜ 3 r θsin e

˜ φ
= e

˜ φ
φsin e

˜ 1– φcos e
˜ 2+=

g
˜

1 e
˜ r=

g
˜

2 1
r
---e

˜ θ
=

g
˜

3 1
r θsin
--------------e

˜ φ
=

v1 vr= v1 vr=

v2 rvθ= v2 vθ
r
-----=

v3 r θsin( )vφ= v3 vφ
r θsin
--------------=
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5.4 The gradient of a scalar
Section 5.1 provided a simplified example for finding the formula for the gradient of a scalar
function of cylindrical coordinates. Now we outline the procedure for more complicated gen-
eral curvilinear coordinates. Recall Eq. (5.18):

, (5.34)

where 

. (5.35)

Dotting both sides of Eq. (5.34) with  shows that

. (5.36)

This important equation is crucial in determining expressions for gradient operations. Con-
sider, for example, a scalar-valued field

. (5.37)

The increment in this function is given by

, (5.38)

or, using Eq. (5.36), 

, (5.39)

which holds for all . The direct notation definition of the gradient  of a scalar field is

 . (5.40)

Comparing the above two equations gives the formula for the gradient of a scalar in curvilin-
ear coordinates:

. (5.41)

Notice that this formula is very similar in form to the familiar formula for rectangular Carte-
sian coordinates. Gradient formulas won’t look significantly different until we compute vec-
tor gradients in the next section.

Example: cylindrical coordinates Consider a scalar field

. (5.42)

dx
˜

dηk g
˜ k=

g
˜ k

∂x
˜

∂ηk
---------=

g
˜

i

dη i g
˜

i dx
˜

•=

s s η1 η2 η3, ,( )=

ds ∂s
∂ηk
---------dηk=

ds ∂s
∂ηk
---------g

˜
k dx

˜
•=

dx
˜

ds dx
˜

⁄

ds ds
dx

˜
------ dx

˜
•= dx

˜
∀

ds
dx

˜
------ ∂s

∂ηk
---------g

˜
k=

s s r θ z, ,( )=
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Applying Eq. (5.41) with the contravariant basis of Eq. (5.26) gives

, (5.43)

which is the gradient formula typically found in math handbooks.

5.5 Gradient of a vector -- “simplified” example
Now let’s look at the gradient of a vector. If the vector is expressed in Cartesian coordi-

nates, the formula for the gradient is

. (5.45)

Suppose a vector  is expressed in the cylindrical coordinates:

. (5.46)

The components , , and  are presumably known as functions of the  coordi-
nates. Importantly, the base vectors also vary with the coordinates! 

First, recall the product rule for the gradient of a scalar times a vector:

. (5.47)

Applying the product rule to each of the terms in Eq. (5.46), the gradient of  gives

+ . (5.48)

Eq. (5.11) applies to the gradient of any scalar. Hence, the first three terms of Eq. (5.48) can be

ds
dx

˜
------ ∂s

∂r
-----e

˜ r
∂s
∂θ
------

e
˜ θ
r

----- ∂s
∂z
-----e

˜ z+ +=

 Study Question 5.2 Follow the above example [using Eq. (5.31) in Eq. (5.41)] to prove that 
the formula for the gradient of a scalar s in spherical coordinates is

. (5.44)ds
dx

˜
------ ∂s

∂r
-----e

˜ r
∂s
∂θ
------

e
˜ θ
r

----- ∂s
∂φ
------

e
˜ φ

r θsin
--------------+ +=

dv
˜dx
˜
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∂vi
∂xj
------- e

˜ ie˜ j=

v
˜

v
˜

vre
˜ r vθe

˜ θ
vze

˜ z+ +=

vr vθ vz r θ z, ,{ }

d su
˜

( )
dx

˜
--------------- u

˜
ds
dx

˜
------ sdu

˜dx
˜

-------+=

dv
˜

dx
˜

⁄

dv
˜dx
˜

------ e
˜ r

dvr
dx

˜
-------- e

˜ θ
dvθ
dx

˜
-------- e

˜ z
dvz
dx

˜
--------+ +=

vr
de

˜ r
dx

˜
-------- vθ

de
˜ θ

dx
˜

--------- vz
de

˜ z
dx

˜
--------+ +
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written

. (5.49)

Now we need formulas for the gradients of the base vectors. Applying the product rule to Eq.
(5.2), noting that the gradients of the Cartesian basis are all zero, gives

. (5.50)

Applying (5.10), 

Substituting Eqs. (5.49) and (5.51) into (5.48) gives

+ 

+ . (5.52)

dvr
dx

˜
-------- vr,re

˜ r

vr,θ
r

--------e
˜ θ

vr,ze
˜ 3+ +=

dvθ
dx

˜
-------- vθ,re

˜ r

vθ,θ
r

---------e
˜ θ

vθ,ze
˜ 3+ +=

dvz
dx

˜
-------- vz,re

˜ r

vz,θ
r

--------e
˜ θ

vz,ze
˜ 3+ +=

de
˜ r

dx
˜

-------- θsin– e
˜ 1 θcos e

˜ 2+( )dθdx
˜

------ e
˜ θ

dθ
dx

˜
------= =

de
˜ θ

dx
˜

--------- θcos– e
˜ 1 θsin e

˜ 2–( )dθdx
˜

------ e
˜ r

dθ
dx

˜
------–= =

de
˜ z

dx
˜

-------- 0
˜̃

=

. (5.51)

de
˜ r

dx
˜

-------- 1
r
---e

˜ θ
e
˜ θ

=

de
˜ θ

dx
˜

--------- 1
r
---e

˜ re
˜ θ

–=

de
˜ z

dx
˜

-------- 0
˜̃

=

dv
˜dx
˜

------ e
˜ r vr,re

˜ r

vr,θ
r

--------e
˜ θ

vr,ze
˜ 3+ + 

 =

e
˜ θ

vθ,re
˜ r

vθ,θ
r

---------e
˜ θ

vθ,ze
˜ 3+ + 

 

e
˜ z vz,re

˜ r

vz,θ
r

--------e
˜ θ

vz,ze
˜ 3+ + 

 

vr
1
r
---e

˜ θ
e
˜ θ 

  vθ
1
r
---e

˜ re
˜ θ

– 
 +
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Collecting terms gives

 = + + 

+ + + 

+ + + . (5.53)

This result is usually given in textbooks in matrix form with respect to the cylindrical basis:

. (5.54)

There’s no doubt that this result required a considerable amount of effort to derive. Typically,
these kinds of formulas are compiled in the appendices of most tensor analysis reference
books. The appendix of R.B. Bird’s book on macromolecular hydrodynamics is particularly
well-organized and error-free. If, however, you use Bird’s appendix, you will notice that the
components given for the gradient of a vector seem to be the transpose of what we have pre-
sented above; that’s because Bird (and some others) define the gradient of a tensor to be the
transpose of our definition. Before using anyone’s gradient table, you should always ascertain
which definition the author uses.

Now we are going to perform the same sort of analysis to show how the gradient is deter-
mined for general curvilinear coordinates.

5.6 Gradient of a vector in curvilinear coordinates
The formula for the gradient of a scalar in curvilinear coordinates was not particularly tough
to derive and comprehend — it didn’t look profoundly different from the formula for rectan-
gular Cartesian coordinates. Taking gradients of vectors, however, begins a new nightmare.
Consider a vector field, 

. (5.55)

Each component of the vector is of course a function of the coordinates, but for general curvi-

dv
˜dx
˜

------ vr,r( )e
˜ re

˜ r
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r
--------

vθ
r
-----– 

  e
˜ re

˜ θ
vr,z( )e

˜ re
˜ z

vθ,r( )e
˜ θ

e
˜ r

vθ,θ
r

---------
vr
r
----+ 

  e
˜ θ

e
˜ θ

vθ,z( )e
˜ θ

e
˜ z

vz,r( )e
˜ ze

˜ r

vz,θ
r

-------- 
  e

˜ ze
˜ θ

vz,ze
˜ ze

˜ z

dv
˜dx
˜

------

vr,r

vr,θ-vθ
r

----------------- vr,z

vθ,r

vθ,θ+vr

r
------------------ vθ,z

vz,r

vz,θ
r

-------- vz,z

=

v
˜

v
˜
η1 η2 η3, ,( )=



rmbrann@me.unm.edu http://me.unm.edu/~rmbrann/gobag.html DRAFT June 17, 2004 75
linear coordinates, so are the base vectors! Written out,

. (5.56)

Therefore the increment  involves both increments  of the components and increments
 of the base vectors:

. (5.57)

Applying the chain rule and using Eq. (5.36), the component increments can be written

. (5.58)

Similarly, the base vector increments are

. (5.59)

Substituting these results into Eq. (5.57) and rearranging gives

, (5.60)

which holds for all . Recall the gradient  of a vector is defined in direct notation
such that

 . (5.61)

Comparing the above two equations gives us a formula for the gradient:

. (5.62)

Incidentally, these equations serve as further examples of how a superscript in the “denomi-
nator” is regarded as a subscript in the summation convention.

Christoffel Symbols Note that the nine  vectors [i.e., the coefficients of  in the last
term of Eq. (5.62)] are strictly properties of the coordinate system and they may be computed
and tabulated a priori. This family of system-dependent vectors is denoted 

. (5.63)

Recalling Eq. (5.35), note that

. (5.64)

Thus, only six of the nine  vectors are independent due to the symmetry in . The kth con-
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j+=
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Γ
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∂η j
--------≡

Γ
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travariant component of  is obtained by dotting  into :

. (5.65)

The quantity  is called the Christoffel symbol of the second kind.

Important comment about notation: Even though the Christoffel symbols  have three
indices, they are not components of a third-order tensor. By this, we mean that a second basis

 will have a different set of Christoffel symbols  and, as discussed below, they are that
are not obtainable via a simple tensor transformation of the Christoffel symbols of the original
system [i.e., ]. Instead of the notation , Christoffel
symbols are therefore frequently denoted in the literature with the odd-looking notation .
The fact that Christoffel symbols are not components of a tensor is, of course, a strong justifi-
cation for avoiding typesetting Christoffel symbols in the same way as tensors. However, to
be 100% consistent, proponents of this notational ideology would — by the same arguments
— be compelled to not typeset coordinates using the notation  which erroneously makes it
look as though the  are contravariant components of some vector , even though they
aren’t. Being comfortable with the typesetting , we are also comfortable with the typeset-
ting . The key is for the analyst to recognize that neither of these symbols connote tensors.
Instead, they are “basis-intrinsic” quantities (i.e., indexed quantities whose meaning is
defined for a particular basis and whose connection with counterparts from a different basis
are not obtained via a tensor transformation rule). Of course, the base vectors themselves are
basis-intrinsic objects. Any new object that is constructed from basis-intrinsic quantities
should be itself regarded as basis-intrinsic until proven otherwise. For example, the metric

 were initially regarded as basis-intrinsic because they were constructed from
basis-intrinsic objects (the base vectors), but it was proved that they turned out to also satisfy
the tensor transformation rule. Consequently, even though the metric matrix is constructed
from basis-intrinsic quantities, it turns out to not be basis intrinsic itself (the metric compo-
nents are components of the identity tensor).

On page 86, we define Christoffel symbols of the “first” kind, which are useful in Rieman-
nian spaces where there is no underlying rectangular Cartesian basis. In general, if the term
“Christoffel symbol” is used by itself, it should be taken to mean the Christoffel symbol of the
second kind defined above. Christoffel symbols may appear rather arcane, but keep in mind
that these quantities simply characterize how the base vectors vary in space. Christoffel are
also sometimes called the “affinities” [12].

Γ
˜ ij g

˜
k Γ

˜ ij

Γij
k g

˜
k Γ

˜ ij•≡

Γij
k

Γij
k

g
˜

k Γij
k

Γij
k Γmn

p g
˜

m g
˜ m•( ) g

˜
n g

˜ n•( ) g
˜ p g

˜
k•( )≠ Γij

k

k
ij{ }

ηk

ηk η
˜ηk

Γij
k

gij g
˜ i g

˜ j•≡
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By virtue of Eq. (5.64), note that

. (5.66)

Like the components  of the tensor , the Christoffel symbols  are properties of the par-
ticular coordinate system and its basis. Consequently, the Christoffel symbols are not the com-
ponents of a third-order tensor. Specifically, if we were to consider some different curvilinear
coordinate system and compute the Christoffel symbols for that system, the result would not
be the same as would be obtained by a tensor transformation of the Christoffel symbols of the
first coordinate system to the second system. This is in contrast to the metric coefficients 
which do happen to be components of a tensor (namely, the identity tensor). 

Recalling that  is the kth contravariant component of  and by Eq. (5.63)
, we conclude that the variation of the base vectors in space is completely

characterized by the Christoffel symbols. Namely, 

. (5.67)

Increments in the base vectors By the chain rule, the increment in the covariant base vec-
tor can always be written

(5.68)

or, using the notation introduced in Eq. (5.67)

(5.69)

Manifold torsion Recall that the Christoffel symbols are not components of basis-indepen-
dent tensors. Consider, however [12], the anti-symmetric part of the Christoffel symbols:

(5.70)

As long as Eq. (5.66) holds, then the manifold torsion will be zero. For a non-holomomic sys-
tem, it’s possible that the manifold torsion will be nonzero, but it will turn out to be a basis
independent (i.e., “free” vector). Henceforth, we assume that Eq. (5.66) holds true, so no fur-
ther mention will be made of the manifold torsion.

Γij
k Γji

k=

Fij F
˜̃

Γij
k

gij

Γij
k Γ

˜ ij
Γ
˜ ij ∂g

˜ i ∂η j⁄=

∂g
˜ i

∂ηj
-------- Γij

k g
˜ k=

dg
˜ i

∂g
˜ i

∂η j
--------dη j=

dg
˜ i Γij

k g
˜ kdηj=

2Γ ij[ ]
k Γij

k Γji
k–≡
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EXAMPLE: Christoffel symbols for cylindrical coordinates In terms of the underlying
rectangular Cartesian basis, the covariant base vectors from Eq. (5.19) can be written

(5.71a)
(5.71b)

. (5.71c)

Therefore, applying Eq. (5.63), using 

(5.72a)

(5.72b)

. (5.72c)

Noting that  is the coefficient of  in the expression for , we find that only three of the
27 Christoffel symbols are nonzero. Namely, noting that  is the coefficient of  in 
and noting that  the coefficient of  in , 

 and  (all other ). (5.73)

If you look up cylindrical Christoffel symbols in a handbook, you will probably find the sub-
scripts (1,2,3) replaced with the coordinate symbols (r,θ,z) for clarity so they are listed as

 and  (all other ). (5.74)

g
˜ 1 θcos e

˜ 1 θsin e
˜ 2+=

g
˜ 2 r θsin– e

˜ 1 r θe
˜ 2cos+=

g
˜ 3 e

˜ 3=

η1=r η2=θ η3=z, ,{ }

Γ
˜ 11

∂g
˜ 1
∂r

--------- 0
˜

= = Γ
˜ 12

∂g
˜ 1
∂θ
--------- θsin– e

˜ 1 θe
˜ 2cos+ 1

r
---g

˜ 2= = = Γ
˜ 13

∂g
˜ 1
∂z

--------- 0
˜

= =

Γ
˜ 21 Γ

˜ 12= Γ
˜ 22

∂g
˜ 2
∂θ
--------- r θcos– e

˜ 1 r θsin e
˜ 2– rg

˜ 1–= = = Γ
˜ 23

∂g
˜ 2
∂z

--------- 0
˜

= =

Γ
˜ 31 Γ

˜ 13= Γ
˜ 32 Γ

˜ 23= Γ
˜ 33

∂g
˜ 3
∂z

--------- 0
˜

= =

Γij
k g

˜ k Γ
˜ ij

Γ12
2 g

˜ 2 Γ
˜ 12

Γ22
1 g

˜ 1 Γ
˜ 22

Γ12
2 Γ21

2 1
r
---= = Γ22

1 r–= Γij
k 0=

Γrθ
θ Γθr

θ 1
r
---= = Γθθr r–= Γij

k 0=
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Partial Answer: To find the vector , first differentiate  from Eq. (5.31a) with respect to 
(i.e., with respect to θ). You then recognize from (5.31b) that the result is . Then t  is
found by dotting  by  from Eq. (5.32b). Hence

.

Covariant differentiation of contravariant components  Substituting Eq. (5.67) into
Eq. (5.62) gives

, (5.77)

or, changing the dummy summation indices so that the basis dyads will have the same sub-
scripts in both terms, 

. (5.78)

We now introduce a compact notation called covariant vector differentiation:

. (5.79)

The notation for covariant differentiation varies widely: the slash in  is also often denoted
with a comma  although many writers use a comma to denote ordinary partial differentia-
tion. Keep in mind: the Christoffel terms in Eq. (5.79) account for the variation of the base vec-
tors in space. Using covariant differentiation, the gradient of a vector is then written
compactly as

. (5.80)

 Study Question 5.3 Using the spherical covariant base vectors in Eq. (5.31), prove that

(5.75a)

(5.75b)

. (5.75c)

Therefore show that the Christoffel symbols for spherical  coordinates are

, , (5.76a)

, (5.76b)
,  (all other ). (5.76c)

Γ
˜ 11 0

˜
= Γ

˜ 12
1
r
---g

˜ 2= Γ
˜ 13

1
r
---g

˜ 3=

Γ
˜ 21 Γ

˜ 12= Γ
˜ 22 rg

˜ 1–= Γ
˜ 23 φcot g

˜ 3=

Γ
˜ 31 Γ

˜ 13= Γ
˜ 32 Γ

˜ 23= Γ
˜ 33 rsin2θg

˜ 1– θsin θcos g
˜ 2–=

r θ φ, ,{ }

Γrθ
θ Γθr

θ 1
r
---= = Γrφ

φ Γφr
φ 1

r
---= =

Γθθr r–= Γθφφ Γφθφ φcot= =
Γφφr rsin2θ–= Γφφθ θsin θcos–= Γij

k 0=

Γ
˜ 12 g

˜ 1 η2
Γ
˜ 12 e

˜ θ
= Γ12

2

Γ
˜ 12 g

˜
2

Γ12
2 Γrθ

θ Γ
˜ 12 g

˜
2• e

˜ θ
e
˜ θ

r⁄( )• 1 r⁄= = = =

dv
˜dx
˜

------ ∂vi

∂η j
--------g

˜ ig˜
j viΓij

k g
˜ kg

˜
j+=

dv
˜dx
˜

------ ∂vi

∂η j
--------g

˜ ig˜
j vkΓkj

i g
˜ ig˜

j+=

vi
/j

∂vi

∂η j
-------- vkΓkj

i+≡

vi
/j

vi
,j

dv
˜dx
˜

------ v/j
i g

˜ ig˜
j=
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Example: Gradient of a vector in cylindrical coordinates Recalling Eq. (5.72), we can
apply Eq. (5.79) to obtain

= (5.81rr)

= (5.81rt)

= (5.81rz)

= (5.81tr)

= (5.81tt)

= (5.81tz)

= (5.81zr)

= (5.81zt)

= (5.81zz)

Hence, the gradient of a vector is given by

 = + + 

+ + + 

+ + + . (5.82)

Substituting Eqs. (5.19), (5.26), and (5.29) into the above formula gives

 = + + 

+ + + 

+ + + . (5.83)

v1
/1

∂v1

∂η1
--------- v1Γ11

1 v2Γ21
1 v3Γ31

1+ + += ∂v1

∂r
--------

v1
/2

∂v1

∂η2
--------- v1Γ12

1 v2Γ22
1 v3Γ32

1+ + += ∂v1

∂θ
-------- v2r–

v1
/3

∂v1

∂η3
--------- v1Γ13

1 v2Γ23
1 v3Γ33

1+ + += ∂v1

∂z
--------

v2
/1

∂v2

∂η1
--------- v1Γ11

2 v2Γ21
2 v3Γ31

2+ + += ∂v2

∂r
--------

v2
/2

∂v2

∂η2
--------- v1Γ12

2 v2Γ22
2 v3Γ32

2+ + += ∂v2

∂θ
-------- v1

r
-----+

v2
/3

∂v2

∂η3
--------- v1Γ13

2 v2Γ23
2 v3Γ33

2+ + += ∂v2

∂z
--------

v3
/1

∂v3

∂η1
--------- v1Γ11

3 v2Γ21
3 v3Γ31

3+ + += ∂v3

∂r
--------

v3
/2

∂v3

∂η2
--------- v1Γ12

3 v2Γ22
3 v3Γ32

3+ + += ∂v3

∂θ
--------

v3
/3

∂v3

∂η3
--------- v1Γ13

3 v2Γ23
3 v3Γ33

3+ + += ∂v3

∂z
--------

dv
˜dx
˜

------ ∂v1

∂r
-------- 
  g

˜ 1g
˜

1 ∂v1

∂θ
-------- v2r– 
  g

˜ 1g
˜

2 ∂v1

∂z
-------- 
  g

˜ 1g
˜

3

∂v2

∂r
-------- 
  g

˜ 2g
˜

1 ∂v2

∂θ
-------- v1

r
-----+ 

  g
˜ 2g

˜
2 ∂v2

∂z
-------- 
  g

˜ 2g
˜

3

∂v3

∂r
-------- 
  g

˜ 3g
˜

1 ∂v3

∂θ
-------- 
  g

˜ 3g
˜

2 ∂v3

∂z
-------- 
  g

˜ 3g
˜

3

dv
˜dx
˜

------
∂vr
∂r
-------- 
  e

˜ re
˜ r

∂vr
∂θ
-------- vθ– 
  e

˜ r
e
˜ θ
r

----- 
  ∂vr

∂z
-------- 
  e

˜ re
˜ z

1
r
---
∂vθ
∂r
-------- 

  re
˜ θ

( )e
˜ r

1
r
---
∂vθ
∂θ
--------

vr
r
----+ 

  re
˜ θ

( )
e
˜ θ
r

----- 
  1

r
---
∂vθ
∂z
-------- 

  re
˜ θ

( )e
˜ z

∂vz
∂r
-------- 
  e

˜ ze
˜ r

∂vz
∂θ
-------- 
  e

˜ z
e
˜ θ
r

----- 
  ∂vz

∂z
-------- 
  e

˜ ze
˜ z
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Upon simplification, the matrix of  with respect to the usual orthonormalized basis
 is

 w.r.t  unit basis. (5.84)

This is the formula usually cited in handbooks.

dv
˜

dx
˜

⁄
e
˜ r e

˜ θ
e
˜ z, ,{ }

dv
˜dx
˜

------

∂vr
∂r
-------- 1

r
---

∂vr
∂θ
-------- vθ– 
  ∂vr

∂z
--------

∂vθ
∂r
-------- 1

r
---
∂vθ
∂θ
--------

vr
r
----+ 

  ∂vθ
∂z
--------

∂vz
∂r
-------- 1

r
---
∂vz
∂θ
--------

∂vz
∂z
--------

= e
˜ r e

˜ θ
e
˜ z, ,{ }

 Study Question 5.4 Again we will duplicate the methods of the preceding example for 
spherical coordinates. However, rather than duplicating the entire hideous analyses, we 
here compute only the  component of . In particular, we seek

. (5.85)

(a) Noting from Eqs. (5.31) and (5.32) how  and  are related to , show that

. (5.86)

(b) Explain why Eq. (5.80) therefore implies that

. (5.87)

(c) With respect to the orthonormal basis  recall from Eq. (5.33) that  and
. Use the Christoffel symbols of Eq. (5.76) in the formula (5.79) to show that

. (5.88)

(d) The final step is to substitute this result into Eq. (5.87) to deduce that

. (5.89)

Cite a textbook (or other reference) that tabulates formulas for gradients in spherical coordi-
nates. Does your Eq. (5.89) agree with the formula for the  component of  pro-
vided in the textbook? 

rφ dv
˜

dx
˜

⁄

e
˜ r

dv
˜dx
˜

------ e
˜ φ

••

e
˜ r e

˜ φ
g
˜ 1 g

˜ 2 g
˜ 3, ,{ }

e
˜ r

dv
˜dx
˜

------ e
˜ φ

•• 1
r θsin
--------------g

˜
1 dv

˜dx
˜

------ g
˜ 3••=

e
˜ r

dv
˜dx
˜

------ e
˜ φ

••
v 3;

1

r θsin
--------------=

e
˜ r e

˜ θ
e
˜ φ

, ,{ } v1=vr
v3=vφ r θsin⁄

v1
/3

∂vr
∂φ
-------- vφ sinθ–( )+=

e
˜ r

dv
˜dx
˜

------ e
˜ φ

•• 1
r θsin
--------------

∂vr
∂φ
--------

vφ
r
-----–=

rφ dv
˜

dx
˜

⁄
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Covariant differentiation of covariant components Recalling, Eq. (5.63), we now consider
a similarly-defined basis-dependent vector:

, (5.90)

and analogously to Eq. (5.65) we define

. (5.91)

Given a vector  for which the covariant  components are known, an analysis similar to
that of the previous sections eventually reveals that the gradient of the vector can be written:

, (5.92)

where

. (5.93)

The question naturally arises: what connection, if any, does  have with ? To answer this
question, differentiate both sides of Eq. (2.12) with respect to :

, (5.94)

or 

 and therefore . (5.95)

In other words,  is just the negative of . Consequently, equation (5.92) becomes

 where . (5.96)

We now have an equation for increments of the contravariant base vectors

(5.97)

which should be compared with Eq. (5.69)

Product rules for covariant differentiation Most of the usual rules of differential calculus
apply. For example,

  and , etc. (5.98)

P
˜ i

k
∂g

˜
k

∂ηi
---------≡

Pij
k P

˜ i
k g

˜ j•≡

v
˜

vk

dv
˜dx
˜

------ vi/jg
˜

ig
˜

j=

vi/j
∂vi

∂ηj
-------- vkPij

k+≡

Pij
k Γij

k

ηk

∂g
˜

i

∂ηk
--------- g

˜ j• g
˜

i
∂g

˜ j

∂ηk
---------•+ 0=

P
˜ k

i g
˜ j• g

˜
i Γ

˜ jk•+ 0= Pkj
i Γkj

i+ 0=

Pij
k Γij

k

dv
˜dx
˜

------ vi/jg
˜

ig
˜

j= vi/j
∂vi

∂η j
-------- vkΓij

k–≡

dg
˜

k Γij
k g

˜
j–( )dη i=

viwj( )/k viwj/k vi/kwj+= viwj( )/k viwj/k vi
/kwj+=
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5.7 Backward and forward gradient operators
The gradient  that we defined in the preceding section is really a backward operating

gradient. By this we mean that the  component follows an index ordering that is analogous
to the index ordering on the dyad . This dyad has components , which is comparable
to the index ordering in the Cartesian ij component formula .

In Cartesian coordinates, the gradient  is a second order tensor whose Cartesian ij
components are given by . But couldn’t we just have well have defined a second order
tensor whose Cartesian ij components would be . The only difference between these
two choices is that the index placement is swapped. Thus, the transpose of one choice gives
the other choice. 

Following definitions and notation used by Malvern [11], we will denote the backward
operating gradient by  and the forward operating gradient by . The “ ” operates on
arguments to its right, while the  operates on arguments to its left. As mentioned earlier,
our previously defined vector gradient is actually a backward del definition:

 means the same thing as . Thus, (5.99)

 means the same thing as Thus, (5.100)

The component ordering for the forward gradient operator is defined in a manner that is
analogous to the dyad , whereas the component ordering for the backward
gradient is analogous to that on the dyad . This leads naturally to the ques-
tion of whether or not it is possible to define right and left gradient operators in a manner that
permits some “heuristic assistance.”

Recall that 

(5.101)

Suppose that we wish to identify a left-acting operator  such that

(5.102)

Let’s suppose we desire to define this operator such that it follows a product rule so that

(5.103)

This suggests that we should define

and (5.104)

dv
˜

dx
˜

⁄
ij
v
˜

d
˜

vidj
∂vi ∂xj⁄

dv
˜

dx
˜

⁄
∂vi ∂xj⁄

∂vj ∂xi⁄

v
˜
∇ ∇v

˜
∇

∇

v
˜
∇

dv
˜dx
˜

------ v
˜
∇ v/j

i g
˜ ig˜

j=

∇v
˜

dv
˜dx
˜

------ 
  T

∇v
˜

v /i
j g

˜ ig˜
j=

d
˜

v
˜

divj( )g
˜ ig˜

j=
v
˜

d
˜

vjdi( )g
˜ ig˜

j=

dv
˜dx
˜

------ ∂vi

∂η j
--------g

˜ ig˜
j vkΓkj

i g
˜ ig˜

j+=

∇

dv
˜dx
˜

------ vig
˜ i( )∇=

vig
˜ i( )∇ g

˜ i vi( )∇[ ] vi g
˜ i( )∇[ ]+=

vi( )∇ ∂vi

∂η j
--------g

˜
j= g

˜ k( )∇ Γkj
i g

˜ ig˜
j=
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Similarly, for the forward operation gradient, we define

(5.105)

from which it follows

 and (5.106)

These definitions are cute, but we caution against using them too cavalierly. A careful applica-
tion of the original definition of the gradient is probably safer.

5.8 Divergence of a vector
The divergence of a vector  is denoted  and it is defined by

(5.107)

The simplicity of the component expression for the trace depends on the expression chosen
for the gradient operation. For example, taking the trace of Eq. (5.96) gives a valid but some-
what ugly expression:

(5.108)

A much simpler expression for the divergence can be obtained by taking the trace of Eq. (5.80)
to give

(5.109)

Written out explicitly, this result is

(5.110)

It will later be shown [in Eq. (5.126)] that

(5.111)

Therefore, Eq. (5.110) gives the very useful formula [7]:

(5.112)

∇ vig
˜ i( ) ∇ vi( ) g

˜ i vi ∇g
˜ i+=

∇ vi( ) ∂vi

∂η j
--------g

˜
j= ∇ g

˜ k( ) Γkj
i g

˜
jg
˜ i=

v
˜

∇ v
˜

•

∇ v
˜

• tr dv
˜dx
˜

------ 
 =

∇ v
˜

• vi/j g
˜

i g
˜

j•( ) vi/j gij( )
∂vi

∂η j
-------- vkΓij

k– gij= = =

∇ v
˜

• v/j
i g

˜ i g
˜

j• v/j
i δi

j v/i
i= = =

∇ v
˜

• ∂vi

∂ηi
-------- vkΓki

i+=

Γki
i 1

J
--- ∂J
∂ηk
---------=

∇ v
˜

• 1
J
--- ∂ Jvk( )
∂ηk
----------------=
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5.9 Curl of a vector
The curl of a vector  is denoted  and it is defined to equal the axial vector1 associ-

ated with . Thus, recalling Eq. (5.100), 

(5.113)

In the last step, we have used the skew-symmetry of the permutation tensor. Substituting Eq.
(5.77) gives

(5.114)

This result can be written as

(5.115)

We can alternatively start with the covariant expression for the gradient given in Eq. (5.96).
Namely,

 where . (5.116)

which gives

(5.117)

Recalling from Eq. (3.47) that , the expanded component form of this result is

(5.118)

where (recall)

(5.119)

1. The axial vector associated with any tensor  is defined by , where  is the permutation tensor.

v
˜

∇ v
˜

×

T
˜̃

1
2
---ξ

˜̃̃
:T
˜̃

– ξ
˜̃̃

∇v
˜

∇ v
˜

× 1
2
---ξ

˜̃̃
: dv

˜dx
˜

------ 
  T

– 1
2
---ξ

˜̃̃
: dv

˜dx
˜

------ 
 = =

∇ v
˜

× 1
2
---ξ

˜̃̃
: ∂vi

∂ηj
-------- vkΓkj

i+ 
  g

˜ ig˜
j=

∇ v
˜

× 1
2
--- ∂vi

∂η j
-------- vkΓkj

i+ 
  g

˜ i g
˜

j×=
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5.10 Gradient of a tensor
Using methods similar to the preceding sections, one can apply the direct notation defini-

tion of the gradient  to eventually prove that

, where , (5.120)

or, if the tensor is known in its covariant components, 

, where . (5.121)

For mixed tensor components, we have

, where . (5.122)

Note that there is a Christoffel term for each subscript on the tensor. The term is negative if the
summed index is a subscript on T and positive if the summed index is a superscript on T.

Ricci’s lemma Recall from Eq. (3.18) that the metric coefficients are components of the iden-
tity tensor. Knowing that the gradient of the identity tensor must be zero, it follows that

 and . (5.123)

Corollary Recall that the Jacobian  equals the volume of the parallelepiped formed by the
three base vectors . Since the base vectors vary with position, it follows that  var-
ies with position. In other words, the Jacobian  may be regarded as a function of the coordi-
nates. Taking the derivative of the Jacobian with respect to the coordinate  and applying
the chain rule gives

, where we have used Eq. (2.30). (5.124)

Recalling from Eq. (5.123) that the metric components have vanishing covariant derivatives, Eq.
(5.121) tells us that

(5.125)

Thus, Eq. (5.124) becomes
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= 

= (5.126)

or

(5.127)

5.11 Christoffel symbols of the first kind
Section 5.6 showed how to compute the Christoffel symbols of the second kind by directly

applying the formula:

. (5.128)

This method was tractable because the space was Euclidean and we could therefore utilize the
existence of an underlying rectangular Cartesian basis to determine the change in the base
vectors with respect to the coordinates. However, for non-Euclidean spaces, you have only
the metric coefficients , and the simplest way to compute the Christoffel symbols of the sec-
ond kind then begins by first computing the Christoffel symbols of the first kind , which
are related to the Christoffel symbols of the second kind by

. (5.129)

These  are frequently denoted in the literature as , presumably to emphasize that
they are not components of any third-order-tensor, in the sense discussed on page __. Substi-
tuting Eq. (5.128) into Eq. (5.129) gives

, (5.130)

where the final term results from lowering the index on . Thus, using Eq. (5.63),

. (5.131)

Recalling that , this result also reveals that  is symmetric in its first two indices:

. (5.132)

Now note that

. (5.133)
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Using Eq. (5.131) gives1 

. (5.134)

This relationship can be easily remembered by noting the structure of the indices. Note, for
example, that the middle subscript on both ‘s is the same as that on the coordinate .

Direct substitution of Eq. (5.134) into (5.135) validates the following expression that can be
used to directly obtain the Christoffel symbols of the first kind given only the metric coeffi-
cients:

. (5.135)

This formula (which can be verified by substituting Eq. (5.134) into (5.135) represents the
easiest way to obtain the Christoffel symbols of the first kind when only the metric coeffi-
cients are known. This formula has easily remembered index structure: for , the index
symbols on each of the  coordinates are ordered . Once the  are known, the Christ-
offel symbols of the second kind are obtained by solving Eq. (5.129) to give

. (5.136)

5.12 The fourth-order Riemann-Christoffel curvature tensor
Recall that this document has limited its scope to curvilinear systems embedded in a

Euclidean space of the same dimension. When the Euclidean space is three-dimensional, then
this document has focused on alternative coordinate systems that still define points in this
space and therefore require three coordinates. An example of a two-dimensional curvilinear
space embedded in Euclidean space is the surface of a sphere. Only two coordinates are
required to specify a point on a sphere and this two dimensional space is “Riemannian” (i.e.,
non-Euclidean) because it is not possible for us to construct a rectangular coordinate grid on a
sphere. In ordinary engineering mechanics applications, the mathematics of reduced dimen-
sion spaces within ordinary physical space is needed to study plate and beam theory.

We have focused on the three-dimensional Euclidean space that we think we live it. In this
modern (post-Einstein) era, this notion of a Euclidean physical world is now recognized to be
only an approximation (referred to as Newtonian space). Einstein and colleagues threw a
wrench in our thinking by introducing the notion that space and time are curved.

We have now mentioned two situations (prosaic shell/beam theory and exciting relativity
theory) where understanding some basics of non-Euclidean spaces is needed. We have men-

1. An alternative way to obtain this result is to simply apply Eq. (5.129) to Eq. (5.125).

∂gik

∂ηj
---------- Γijk Γkji+=

Γ η j

Γijk
1
2
---

∂gjk

∂ηi
----------

∂gki

∂η j
----------

∂gij

∂ηk
---------–+=

Γijk
η i j k, , Γijk

Γij
n Γijkgkn=



rmbrann@me.unm.edu http://me.unm.edu/~rmbrann/gobag.html DRAFT June 17, 2004 89
tioned that a Riemannian space is one that does not permit construction of a rectangular coor-
dinate grid. How is this statement cast in mathematical terms? In other words, what process is
needed to decide if a space is Euclidean or Riemannian in the first place. The answer is tied to
a special fourth-order tensor called the Riemann-Christoffel tensor soon to be defined. If this
tensor turns out to be zero, then your space is Euclidean. Otherwise, it is Riemannian. 

The Riemann-Christoffel tensor is defined

(5.137)

or

(5.138)

This tensor is skew-symmetric in the first two indices and in the last two indices. It is major
symmetric:

(5.139)

In a two-dimensional space, only the  component is independent, the others being either
zero or related to this component by .

Note from Eq. (5.137) that  depends on the Christoffel symbols. For a Cartesian sys-
tem, all Christoffel symbols are zero. Hence, in a Cartesian system, . Thus, if a space
is capable of supporting a Cartesian system (i.e., if the space is Euclidean), then the Riemann-
Christoffel tensor must be zero. This would be true even if you aren’t actually using a Carte-
sian system. For example, ordinary 3D Newtonian space is Euclidean and therefore its Rie-
mann-Christoffel tensor must be zero even if you happen to employ a different set of three
curvilinear coordinates such as spherical coordinates . This would follow because the
transformation relations are linear. Hence, if there exists a Cartesian system (in which the Rie-
mann-Christoffel tensor is zero), a linear transformation to a different, possibly curvilinear,
system would result again in the zero tensor. For the Riemann-Christoffel tensor to not be
zero, you would have to be working in a reduced dimension space [such as the surface of a
sphere where the coordinates are ]. The Riemann-Christoffel tensor is, therefore, a mea-
sure of curvature of a Riemannian space. Because the Riemann-Christoffel tensor transforms
like a tensor, it is not a basis-intrinsic quantity despite the fact that it has been here defined in
terms of basis-intrinsic quantities. A similar situation was encountered with the metric coeffi-
cients , which were defined . The metrics  are components of the identity
tensor. Therefore the product of these components times base vectors  is basis-inde-
pendent (it equals the identity tensor). Similarly, the product of the Riemann-Christoffel com-
ponents times basis vectors is basis-independent:

(5.140)

Rijkl
∂Γjli

∂ηk
-----------

∂Γjki

∂η l
------------– ΓilpΓjk

p ΓikpΓjl
p–+=

Rijkl
1
2
---

∂2gil

∂ηj∂ηk
------------------

∂2gjl

∂ηi∂ηk
------------------–

∂2gik

∂ηj∂η l
-----------------–

∂2gjk

∂η i∂ηl
-----------------+ 

  gmn ΓjknΓilm ΓjlmΓikn–( )+=

Rijkl Rjikl– Rijlk– Rklij= = =

R1212
R1212 R2112– R1221– R2121= = =

Rijkl
Rijkl 0=

r θ φ, ,( )

θ φ,( )

gij gij g
˜ i g

˜ j•= gij
gijg

˜
ig
˜

j

R
˜̃̃̃

Rijklg
˜

ig
˜

jg
˜

kg
˜

l=



rmbrann@me.unm.edu http://me.unm.edu/~rmbrann/gobag.html DRAFT June 17, 2004 90
or

(5.141)

or

(5.142)

or

(5.143)

where

(5.144)

Noting that the indices on this tensor may be permuted in any manner, note that the first and
third terms in Eq. (5.143) may be canceled, giving

(5.145)

or, rearranging slightly,

(5.146)

or

(5.147)

where

(5.148)

6.  Embedded bases and objective rates
We introduced the mapping tensor  in Eq. (2.1) to serve as a mere “helper” tensor.

Namely, if the basis  exists in a Euclidean space, then we defined

(6.1)

Here, the basis,  is the same as the “laboratory” basis that we had originally used
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in Section 2. In continuum mechanics (especially the older literature), a special “convected”
coordinate system is often adopted in which the coordinates  of a point currently located a
a position  at time t are identified to equal the initial Cartesian coordinates  of the same
material particle at time . For this special case, the coordinate grid is identical to the defor-
mation of the initial coordinate grid when it is convected along with the material particles. For
this special case, the mapping tensor  in Eq. (6.1) is identical to the deformation gradient ten-
sor from traditional continuum mechanics. In this physical context, the term “covariant” is
especially apropos because the covariant base vector  varies coincidently with the underly-
ing material particles. That is, the unit cube is defined by three unit vectors  will,
upon deformation, deform to a parallelepiped whose sides move with the material and the
sides of this parallelepiped are given by the three convected base vectors .

By contrast, consider the contravariant base vectors, which (recall) are related to the map-
ping tensor by

(6.2)

These base vectors do not move coincidently with the material particles. Instead, the contra-
variant base vectors move somewhat contrary to the material motion. In particular, if

 are the outward unit normals to the unit cube, then material deformation will
generally move the cube to a parallelepiped whose faces now have outward unit normals par-
allel to . In general, the motion of the normal to a plane moves somewhat con-
trary to the motion of material fibers that were originally parallel to the plane’s normal.

Of course, it is not really necessary for the initial coordinate system to be Cartesian itself.
When the initial coordinate system is permitted to be curvilinear, then we will denote its asso-
ciated set of base vectors by . As before, these covariant base vectors deform to
new orientations given by 

(6.3)

The associated dual basis is given by

(6.4)

Here  is here retaining its meaning as the physical deformation gradient tensor, which
necessitates introducing new symbols to denote the mapping tensors for the individual curvi-
linear bases. Namely, we will presume the existence of tensors  and  such that
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from which it follows that

 and , where (6.7)

 and , where (6.8)

Furthermore, substituting Eqs. (6.5) and (6.6) into (6.3) implies that

(6.9)

In continuum mechanics, the Seth-Hill generalized strain [13] measure is defined in direct
notation as

(6.10)

Here, the Seth-Hill parameter  is selected according to whichever strain measure the analyst
prefers. Namely, 

--> True/Swainger strain
--> engineering/Cauchy strain
--> Green/Lagrange strain
--> Almansi

 --> logarithmic/Hencky strain

Of course, the case of  must be applied in the limit.

The Lagrangian strain measure corresponds to choosing  to give

(6.11)

The “Euler” strain measure corresponds to choosing  to give

(6.12)

Strain measures in older literature look drastically different from this because they are
typically expressed in terms of initial and deformed metric tensors. What is the connection?
First note from Eq. (6.3) that
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appears frequently in older literature) is identically equal to the covariant components of the
Lagrangian strain tensor with respect to the initial basis.

Similarly, you can show that 

(6.16)

In general, if you wish to convert a component equation from the older literature into modern
invariant direct notation form, you can use Eqs. (6.5), (6.6) and (6.9) as long as you can deduce
which basis applies to the component formulas. Converting an index equation to direct sym-
bolic form is harder than the reverse (which is a key argument used in favor of direct sym-
bolic formulations of governing equations). Consider, for example, the definition of the
second Piola Kirchhoff tensor:

, where . (6.17)

Here,  and  is the Cauchy stress. The tensor  is called the “Kirchhoff” stress,
and it is identically equal to the Cauchy stress for incompressible materials. Dotting both
sides of the above equation by the initial contravariant base vectors gives

(6.18)

or, using Eq. (6.4), 

(6.19)

This shows that the contravariant components of the second Piola Kirchhoff tensor with
respect to the initial basis are equal to the contravariant components of the Kirchhoff tensor
with respect to the current basis. Results like this are worth noting and recording in your per-
sonal file so that you can quickly convert older curvilinear constitutive model equations into
modern direct notation form.
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7.  Concluding remarks.
R.B. Bird et al. [1] astutely remark “...some authors feel it is stylish to use general tensor

notation even when it is not needed, and hence it is necessary to be familiar with the use of
base vectors and covariant and contravariant components in order to study the literature...” 

Modern researchers realize that operations such as the dot product, cross product, and
gradient are proper tensor operations. Such operations commute with basis and/or coordi-
nate transformations as long as the computational procedure for evaluating them is defined
in a manner appropriate for the underlying coordinates or basis. In other words, one can
apply the applicable formula for such an operation in any convenient system and transform the
result to a second system, and the result will be the same as if the operation had been applied
directly in the second system at the outset. 

Once an operation is known to be a proper tensor operation, it is endowed with a struc-
tured (direct) notation symbolic form. Derivations of new identities usually begin by casting a
direct notation formula in a conveniently simple system such as a principal basis or maybe
just ordinary rectangular Cartesian coordinates. From there, proper tensor operations are per-
formed within that system. In the final step, the result is re-cast in structured (direct) notation.
A structured result can then be justifiably expressed into any other system because all the oper-
ations used in the derivation had been proper operations. Consequently, one should always
perform derivations using only proper tensor operations using whatever coordinate system
makes the analysis accessible to the largest audience of readers. The last step is to cast the
final result back in direct notation, thereby allowing it to be recast in any other desired basis
or coordinate system.
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