Control Volume Forms of the Fundamental Laws

1. Conservation of Mass
2. Conservation of Linear Momentum
3. Conservation of Angular Momentum (moment of momentum)
4. Conservation of Energy

Examples of Integral Equations

- Power requirements for Hydraulic lifts
- Loads on an aircraft
- Down force on a race car
- Horsepower to pump liquids through a pipeline
- Gas pressure in an Internal Combustion

Approach to Problem Solving

1. Determine if Control Volume Analysis is appropriate (vs. differential for example)
2. Examine the behavior of Control Volume
 A. Fixed – Pipe flow
 B. Moving – Airplane flying (Non-inertial)
 C. Elastic – Balloon inflating
Derivation of the Reynolds Transport Theorem

What: A formal mathematical expression which allows the time rate of change of an extensive property for a given quantity of mass, a system, to be expressed in terms of quantities related to a specific region of space, a control volume.

Why: All conservation laws are written for systems. We need to express the time rate of change for a system in terms of a control volume. That is, since it is difficult to identify and follow the same mass of fluid, we need an Eulerian description.

Definitions

• System - A fixed collection of mass particles
• Control Volume – defined region in space
• Extensive Property (N) – property of the system that depends on mass (“Stuff”).
 – Momentum, internal energy, entropy
• Intensive Property (η) – property of the system that is independent of mass
 – Temperature, velocity, specific energy

Basic Concepts

Objective:
Describe the rate at which an integral quantity associated with the system is changing as the flow passes into and out of the Control Volume.

Note: Fluid DOES NOT pass in and out of a system.
Integral Properties:
- Mass flow rate: $\dot{m} = \int \rho \vec{V} \cdot \hat{n} \, dA$
- Drag force: $F_D = \int \vec{v} \cdot \hat{n} \, dA$
- Kinetic energy: $KE = \int \frac{1}{2} \rho V^2 \, dV$

Extensive/Intensive Properties
- Total mass: $N = \int \rho \vec{V} \, dV$
- Momentum: $N = mV$
- Mass: $N = m$
- Intensive mass: $\eta = \frac{m}{m} = 1$

Reynolds Transport Theorem for a Non-Deformable Control Volume
- Fixed control surface 1 2 3
Reynolds Transport Theorem for a Non-Deformable Control Volume

System at \(t+\Delta t \) (Green Stuff)

Finding the Size of the “Sweeping Volume”

Elemental volume from 1 - Incoming

Elemental volume from 2 - Outgoing

\[dV_i = (\mathbf{V} \cdot \mathbf{h}) \Delta A_i \]

\[(\mathbf{V} \cdot \mathbf{h}) \mathbf{M} = \text{a length normal to the CS} \]