Boundary Layers in a Pressure Gradient

External Flows

Skin Friction vs. Pressure Drag
Drag on Sphere & Cylinders

Cylinders & Spheres: Prior to separation both components of drag can be significant.

Drag

Cylinders & Spheres: Prior to separation both components of drag can be significant.

Drag

Cylinders & Spheres: Prior to separation both components of drag can be significant.
Sphere Flow Separation

Can not determine Separation point analytically (as it may move dynamically), we must use experiments or numerical solutions to N-S equations.

Turbulent BL

Laminar BL

See MM Video

Method of Drag Reduction

1. Streamlining – reduce pressure drag - reduce regions of dp/dx > 0 (either in size or magnitude) – prevent separation
 i. Add fairings – prevent buffeting & vortex shedding
 ii. Contour leading or Trailing edges – for struts, columns, etc
 iii. For Airfoils – move position of maximum thickness seaward (recall dp/dx < 0 inhibits separation & dp/dx > 0 promotes separation)

2. Reducing Friction Drag
 1. Oil pipeline – introduce a thin film of water around edge of pipe – oil rides over low viscosity water – reduces drag ~60%
 2. Vee-Groove micro Riblets – stream oriented and are effective at reducing drag ~8%
 3. Large Eddy Breakup Devices – reduces local friction ~10%

3. Biological Drag Reduction – trees & leaves

Airfoils - Symmetric

Symmetric Airfoils have no lift at $\alpha = 0$
Airfoils - Cambered

Cambered Airfoils have lift at $\alpha = 0$

Naming Convention:
NACA 4-digit Series: Example NACA 0012
Max value of mean-line ordinate in % chord
Distance from leading edge to the location of max camber in tenths of the chord
Max Section thickness in % chord

Lift Force

- The purpose of an airfoil is to generate a Force normal to the approach velocity – Lift Force F_L

\[C_L = \frac{F_L}{\frac{1}{2} \rho U^2 A} \]

- Lift is generated by an imbalance in pressure along the upper and lower surfaces

\[F_L = \int (p \sin \alpha) dS \]

High Velocity – Low Pressure

Low Velocity – High Pressure

Lift Force – Circulation - Γ

Path Dependant

\[\frac{F_L}{L} = -\rho U \cdot \Gamma \]

\[\Gamma = \int \nabla \cdot dl = \iint (\nabla \cdot \vec{A}) dA \]

\[dl = dx \hat{i} + dy \hat{j} + dz \hat{k} \]

Example Problems:
Figure 9.17 from Fox et al. 2004

Lift/Drag Tradeoff

Symmetric Airfoil Pressure Distributions

Figure from Fox et al. 2004