Introduction to Compressible
 Flow

$$
\frac{D \rho}{D t} \neq 0
$$

The density of a gas changes significantly along a streamline

\qquad
\qquad

Compressible Flow

1. Mach Number: $\quad M=\frac{V}{c}=\frac{\text { local velocity }}{\text { speed of sound }}$ \qquad
2. Compressibility becomes important for High Speed Flows where $M>0.3$

- $M<0.3$ - Subsonic \& incompressible
- $0.3<M<0.8$ - Subsonic \& compressible
- $0.8<M<1.2$ - transonic flow - shock waves appear mixed subsonic and sonic flow regime
- $1.2<M<3.0$ - Supersonic - shock waves are present but NO subsonic flow
- \quad M > 3.0 - Hypersonic Flow, shock waves and other flow changes are very strong

Compressible Flow

3. Significant changes in velocity and pressure result in density variations throughout a flow field
4. Large Temperature variations result in density variations.

As a result we now have two new variables we must solve for:

$T \& \rho$

We need 2 new equations.
We will solve: mass, linear momentum, energy and an equation of state

Important Effects of Compressibility on Flow

\qquad

1. Choked Flow - a flow rate in a duct is limited by the sonic condition
2. Sound Wave/Pressure Waves - rise and fall of \qquad pressure during the passage of an acoustic/sound wave. The magnitude of the pressure change is very small.
3. Shock Waves - nearly discontinuous property changes in supersonic flow. (Explosions, high speed flight, gun firing, nuclear explosion)
4. A pressure ratio of $2: 1$ will cause sonic flow

Applications

\qquad
\qquad

1. Nozzles and Diffusers and converging diverging nozzles \qquad
2. Turbines, fans \& pumps
3. Throttles - flow regulators, an obstruction in a duct that controls pressure drop.
4. One Dimensional Isentropic Flow compressible pipe flow.

Approach

- Control volume approach
- Steady, One-dimension, Uniform Flow
- Additional Thermodynamics Concepts are needed
- Restrict our analysis to ideal gases

Thermodynamics

- Equation of State - Ideal Gas Law

$$
p=\rho R T
$$

$R=\frac{R_{u}}{M_{m}}=\frac{\text { Universal Gas Constant }}{\text { Molecular mass of air }}=\frac{8314 \mathrm{~J} /(\mathrm{kmol} \cdot \mathrm{K})}{28.97 \mathrm{~kg} / \mathrm{kmol}}=287 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})$
Temperature is absolute and the specific volume is (volume per unit mass):

$$
v=\frac{1}{\rho}
$$

Thermodynamics - Internal Energy \&
Enthalpy
\qquad

- Internal Energy - individual particle kinetic energy Summation of molecular vibrational and rotational energy. \qquad $\tilde{u}=\tilde{u}(v, T)$

$$
d \tilde{u}=\left(\frac{\partial \tilde{u}}{\partial T}\right)_{v} d T+\left(\frac{\partial \tilde{u}}{\partial v}\right)_{T} d v
$$

\qquad

- For an ideal gas $\tilde{u}=\tilde{u}(T)$
$d \tilde{u}=c_{v} d T$
- Recall from our integral form of the Energy Equation for Enthalpy of an ideal gas: $h=\tilde{u}+p v$

$$
\begin{aligned}
h & =h(T) \\
d h & =c_{p} d T
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad

Thermodynamics - Internal Energy \& Enthalpy
$h=\tilde{u}+p v$
$h=\tilde{u}+R T$ \qquad $\longrightarrow \quad \frac{p}{\rho}=R T$
$d h=d \tilde{u}+R d T$
Substituting:

$$
\begin{gathered}
d h=c_{p} d T \quad d \tilde{u}=c_{v} d T \\
d h=d \tilde{u}+R d T \\
c_{p} d T=c_{v} d T+R d T \\
c_{p}=c_{v}+R \\
c_{p}-c_{v}=R=\text { const }
\end{gathered}
$$

Thermodynamics - Internal Energy \& Enthalpy
Define the ratio of specific heats: $k \equiv \frac{c_{p}}{c_{v}}=$ const
Then,

$$
\begin{aligned}
& c_{p}=\frac{k R}{k-1} \\
& c_{v}=\frac{R}{k-1}
\end{aligned}
$$

For Air: $c_{p}=1004 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$
$k=1.4$

The $2^{\text {nd }}$ Law of Thermodynamics \& Isentropic Processes

We define entropy by:

$$
\begin{gathered}
\qquad d s=\left(\frac{\delta Q}{T}\right)_{r e v} \\
\text { Combining the } 1^{\text {st }} \text { and } 2^{\text {nd }} \text { Laws gives us Gibb's Equation } \\
T d s=d h-\frac{d p}{\rho} \\
T d s=c_{p} d T-\frac{d p}{\rho} \longleftarrow d h=c_{p} d T \\
\int_{1}^{2} d s=c_{p} \int_{1}^{2} \frac{d T}{T}-R \int_{1}^{2} \frac{d p}{p} \longleftarrow \quad \frac{1}{\rho T}=\frac{R}{p}
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\square
$$

\square
\qquad

The $2^{\text {nd }}$ Law of Thermodynamics \& Isentropic Processes

$$
s_{2}-s_{1}=c_{p} \ln \frac{T_{2}}{T_{1}}-R \ln \frac{p_{2}}{p_{1}}
$$

For an Isentropic process: adiabatic and reversible We get the following power law relationship

$$
\frac{p_{2}}{p_{1}}=\left(\frac{T_{2}}{T_{1}}\right)^{\frac{k}{k-1}}=\left(\frac{\rho_{2}}{\rho_{1}}\right)^{k} \swarrow
$$

Control Volume Analysis of a Finite Strength

 Pressure WaveMoving Wave of Frontal Area A Stationary Wave

c		Reference frame moving with wave	
	$p+\Delta p$	p p ${ }^{1}$	$p+\Delta p$
ρ	$\rho+\Delta \rho$	ρ	$\rho+\Delta \rho$
T	$T+\Delta T$	T	$T+\Delta T$
$V=0$	$\longleftarrow \Delta V$	$V=c \longrightarrow$	$\longrightarrow V=c-\Delta V$

Steady State Continuity Equation (Solve for the induced velocity $\Delta \mathrm{V}$):

$$
0=\int_{C S} \rho(\vec{V} \bullet \hat{n}) d A=-\int_{1} \rho c d A+\int_{2}(\rho+\Delta \rho)(c-\Delta V) d A
$$

$$
\rho_{c} A=(\rho+\Delta \rho)(c-\Delta V)_{A}
$$

$$
\rho c=c(\rho+\Delta \rho)-\Delta V(\rho+\Delta \rho)
$$

$$
\Delta V=c \frac{\Delta \rho}{\rho+\Delta \rho}
$$

The Speed of sound (c) is the rate of propagation of a pressure wave of infinitesimal
strenoth through a still fluid. strength through a still fluid.

Control Volume Analysis of a Finite Strength Pressure Wave

Steady State Momentum Equation:
(Find Δp and c)
$\sum F_{x}=\int_{C S} \rho V_{x}(\vec{V} \bullet \hat{n}) d A=\dot{m}\left(V_{2}-V_{1}\right)$
$\begin{array}{ll:l}p & 1 \\ \rho\end{array} \begin{aligned} & 2 \\ & p+\Delta p \\ & \rho+\Delta \rho\end{aligned}$
$p A-(p+\Delta p) A=\rho c A(c-\Delta V-c)$
$\Delta p=\rho c \Delta V$
(B)

Now combine A \& B and solve for the speed of sound:
$c^{2}=\frac{\Delta p}{\Delta \rho} \frac{\rho+\Delta \rho}{\rho}=\frac{\Delta p}{\Delta \rho}\left(1+\frac{\Delta \rho}{\rho}\right)$
$c^{2}=\frac{\partial p}{\partial \rho} \quad$ in the limit of $\Delta \rho \rightarrow 0$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 1: Speed of sound calculation

Determine the speed of sound in Argon (Ar) at $120^{\circ} \mathrm{C}$. MW $=40$ $\mathrm{kg} / \mathrm{kmol}$:

$$
\begin{aligned}
& c=\sqrt{k R T} \\
& R=\frac{R_{u}}{M_{m}}=\frac{8314 \mathrm{~J} /(\mathrm{kmol} \cdot \mathrm{~K})}{40 \mathrm{~kg} / \mathrm{kmol}}=207.9 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{~K}) \\
& k=\frac{c_{p}}{c_{v}} \approx 1.668
\end{aligned}
$$

Example 1: Speed of sound calculation
Determine the speed of sound in Argon (Ar) at $120^{\circ} \mathrm{C} . \mathrm{MW}=40$
$\mathrm{~kg} / \mathrm{kmol}:$
$c=\sqrt{k R T}$
$R=\frac{R_{u}}{M_{m}}=\frac{8314 \mathrm{~J} /(\mathrm{kmol} \cdot \mathrm{K})}{40 \mathrm{~kg} / \mathrm{kmol}}=207.9 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})$
$k=\frac{c_{p}}{c_{v}} \approx 1.668$
$c=\sqrt{1.668(207.9 \mathrm{~J} / \mathrm{kgK})(393 \mathrm{~K})}=318.8 \mathrm{~ms}^{-1}$

$$
c=\sqrt{1.668(207.9 \mathrm{~J} / \mathrm{kgK})(393 K)}=318.8 \mathrm{~ms}^{-1}
$$

> Control Volume Analysis of a Finite Strength Pressure Wave
> Calculating the Speed of Sound for an ideal gas:
> $\frac{p}{\rho^{k}}=$ const
> $\frac{\partial p}{\partial \rho}=k \frac{p}{\rho} \longrightarrow c=\sqrt{k \frac{p}{\rho}}=\sqrt{k R T}$
> For Air:
> $k=\frac{c_{p}}{c_{v}} \approx 1.4$
> $R=287 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})$
\qquad

Movement of a sound source and wave propagation

\qquad
\qquad
\qquad
Source moves to the right at a speed V

$$
\sin \alpha=\frac{V}{c}=\frac{1}{M}
$$

Example 2: a needle nose projectile traveling at a speed of M=3 passes 200m above an observer. Find the projectiles velocity and determine how far beyond the observer the projectile will first be heard \qquad

Example 2: a needle nose projectile traveling at a speed of $M=3$ passes 200 m above an observer. Find \qquad
the projectiles velocity and determine how far beyond the observer the projectile will first be heard \qquad

$$
\begin{aligned}
& c=\sqrt{k R T}=\sqrt{1.4(287)(300)}=347.2 \mathrm{~m} / \mathrm{s} \\
& V=M c=3(347.2)=1041.6 \mathrm{~m} / \mathrm{s} \\
& \alpha=\sin ^{-1}\left(\frac{1}{M}\right)=\sin ^{-1}\left(\frac{1}{3}\right)=19.5^{\circ} \\
& \tan \alpha=\frac{200 \mathrm{~m}}{x} \\
& x=\frac{200 \mathrm{~m}}{\tan 19.5}=565 \mathrm{~m}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Steady Isentropic Flow - Control Volume Analysis \qquad

Applications where the assumptions of steady,
\qquad uniform, isentropic flow are reasonable:

1. Exhaust gasses passing through the blades of a turbine.
2. Diffuser near the front of a jet engine
3. Nozzles on a rocket engine
4. A broken natural gas line

\qquad
\qquad
\qquad
\qquad
\qquad

Steady State Continuity Equation: \qquad
$0=\int \rho(\vec{V} \bullet \hat{n}) d A=-\rho_{1} V_{1} A_{1}+\rho_{2} V_{2} A_{2}$
$\rho V A=(\rho+d \rho)(V+d V)(A+d A)$
\qquad $\rho V A=\rho A V+\rho V d A+V A d \rho+V d \rho d A+\rho A d V+\rho d A \vec{A} \vec{V}+A d \rho \pi \tilde{V}+d \rho d A \vec{d} d V$

$$
0=\frac{d A}{A}+\frac{d \rho}{\rho}+\frac{d V}{V}
$$

\qquad

Only retain $1^{\text {st }}$ order differential terms \& divide
By ρ VA

Steady Isentropic Flow

\qquad
\qquad
\qquad
Steady State Energy Equation with
\qquad
Neglecting potential energy and recalling: $h=\tilde{u}+p v$

$$
\frac{\dot{Q}-\dot{W}_{s}}{\dot{m}}=\frac{V_{2}^{2}-V_{1}^{2}}{2}+h_{2}-h_{1}
$$

Assuming and ideal gas:

$$
\frac{\dot{Q}-\dot{W}_{s}}{\dot{m}}=\frac{V_{2}^{2}-V_{1}^{2}}{2}+c_{p}\left(T_{2}-T_{1}\right)
$$

Steady State Energy Equation with 1 inlet
\& 1 exit, neglecting potential energy \&
assuming Isentropic duct flow:

$$
\frac{V_{2}^{2}}{2}+h_{2}=\frac{V_{1}^{2}}{2}+h_{1}
$$

Assuming and ideal gas

$$
\begin{gathered}
\frac{V_{2}^{2}}{2}+c_{p} T_{2}=\frac{V_{1}^{2}}{2}+c_{p} T_{1} \\
\frac{V_{2}^{2}}{2}+\frac{k}{k-1} R T_{2}=\frac{V_{1}^{2}}{2}+\frac{k}{k-1} R T_{1}
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

Stagnation Conditions - maximum velocity

$$
\begin{equation*}
T_{o}=\frac{V^{2}}{2 c_{p}}+T \tag{+}
\end{equation*}
$$

If the temperature, T is taken taken down to absolute zero, then (+) can be solved for the maximum velocity:

$$
V_{\text {max }}=\sqrt{2 c_{p} T_{o}}
$$

No higher velocity is possible unless energy is added to the flow through heat transfer or shaft work.

Stagnation Conditions - Mach number relations

Recall, that the Mach number is defined as: $\quad M=\frac{V}{c}$
$T_{o}=\frac{V^{2}}{2 c_{p}}+T \quad$ For Ideal gases:
$\frac{T_{o}}{T}=\frac{V^{2}}{T 2 c_{p}}+1 \longrightarrow c_{p} T=\underbrace{\left(\frac{k R}{k-1}\right)} T=\underbrace{k R T}_{c^{2}} \frac{1}{k-1}$
$\frac{T_{o}}{T}=\frac{k-1}{2} \frac{V^{2}}{c^{2}}+1=\frac{k-1}{2} M^{2}+1$

$$
\frac{T_{o}}{T}=\frac{k-1}{2} M^{2}+1
$$

Stagnation Conditions - Isentropic pressure \& density relationships

$$
\begin{aligned}
& \frac{T_{o}}{T}=\frac{k-1}{2} M^{2}+1 \\
& \frac{p_{o}}{p}=\left(\frac{T_{o}}{T}\right)^{\frac{k}{k-1}}=\left(\frac{k-1}{2} M^{2}+1\right)^{\frac{k}{k-1}} \\
& \frac{\rho_{o}}{\rho}=\left(\frac{T_{o}}{T}\right)^{\frac{1}{k-1}}=\left(\frac{k-1}{2} M^{2}+1\right)^{\frac{1}{k-1}}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Critical Values: conditions when $M=1$

$$
\begin{aligned}
& \frac{T^{*}}{T_{o}}=\left(\frac{2}{k+1}\right) \\
& \frac{p^{*}}{p_{o}}=\left(\frac{2}{k+1}\right)^{\frac{k}{k-1}} \\
& \frac{\rho^{*}}{\rho_{o}}=\left(\frac{2}{k+1}\right)^{\frac{1}{k-1}} \\
& \frac{c^{*}}{c_{o}}=\left(\frac{2}{k+1}\right)^{\frac{1}{2}}
\end{aligned}
$$

Critical Values: conditions when $M=1$
For Air $k=1.4$

$\frac{T^{*}}{T_{o}}=\left(\frac{2}{k+1}\right)=0.8333$
$\frac{p^{*}}{p_{o}}=\left(\frac{2}{k+1}\right)^{\frac{k}{k-1}}=0.5283$
$\frac{\rho^{*}}{\rho_{o}}=\left(\frac{2}{k+1}\right)^{\frac{1}{k-1}}=0.9129$
$\frac{c^{*}}{c_{o}}=\left(\frac{2}{k+1}\right)^{\frac{1}{2}}=0.9129$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
In all isentropic flow, all critical values are constant.

Critical Values: conditions when $M=1$
Critical Velocity: is the speed of sound c^{*}

$$
\begin{gathered}
\frac{c^{*}}{c_{o}}=\left(\frac{2}{k+1}\right)^{\frac{1}{2}} \\
V^{*}=c^{*}=\sqrt{k R T^{*}}=c_{o}\left(\frac{2}{k+1}\right)^{\frac{1}{2}}=\left(\frac{2 k R T_{o}}{k+1}\right)^{\frac{1}{2}}
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 3: Stagnation Conditions

Air flows adiabatically through a duct. At point l the velocity
\qquad is $240 \mathrm{~m} / \mathrm{s}$, with $T_{1}=320 \mathrm{~K}$ and $p_{1}=170 \mathrm{kPa}$. Compute
(a) T_{o}
(b) P_{o}
(c) r_{o}
(d) M
(e) $V_{\max }$
(f) V^{*}

Steady Isentropic Duct Flow

Recall, for Steady isentropic flow Continuity:
\qquad
$(\dagger) \quad 0=\frac{d A}{A}+\frac{d \rho}{\rho}+\frac{d V}{V} \longrightarrow \frac{d A}{A}=-\frac{d \rho}{\rho}-\frac{d V}{V}$
For compressible, isentropic flow the momentum equation is:
(*) $0=\frac{d p}{\rho}+\frac{d V^{2}}{2}=\frac{d p}{\rho}+V d V \longrightarrow \quad \begin{gathered}\text { Bernoulli's Equation! } \\ \text { neglecting gravity }\end{gathered}$
Substitute (\dagger) into (*)

$$
\frac{d A}{A}=-\frac{d \rho}{\rho}+\frac{d p}{\rho V^{2}}=\frac{d p}{\rho}\left(\frac{1}{V^{2}}-\frac{d \rho}{d p}\right)
$$

Nozzle Flow Characteristics

$$
\frac{d A}{A}=\frac{d p}{\rho V^{2}}\left(1-M^{2}\right)
$$

Steady Isentropic Duct Flow - Nozzles Diffusers and Converging Diverging Nozzles

\qquad
$(\dagger \dagger) \quad \frac{d A}{A}=\frac{d p}{\rho V^{2}}\left(1-M^{2}\right) \longrightarrow \begin{aligned} & \text { Describes how the pressure } \\ & \text { behaves in nozzles and diffusers } \\ & \text { under various flow conditions }\end{aligned}$ \qquad

Recall, the momentum equation here is: \qquad
$0=\frac{d p}{\rho}+V d V \longrightarrow \frac{d p}{\rho}=-V d V \quad(* *)$
Now substitute (${ }^{* *}$) into ($\dagger \dagger$):
\qquad

$$
\frac{d A}{A}=\frac{d V}{V}\left(M^{2}-1\right)
$$

\qquad
Or,

$$
\frac{d A}{d V}=\frac{A}{V}\left(M^{2}-1\right)
$$

Nozzle Flow Characteristics

$$
\frac{d A}{A}=\frac{d V}{V}\left(M^{2}-1\right)
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Consider a converging Nozzle:

Mass Flow Rate (ideal gas):

$$
\begin{gathered}
\dot{m}=\rho V A=\frac{p}{R T} V A \quad M=\frac{V}{c}=\frac{V}{\sqrt{k R T}} \\
\dot{m}=\frac{p}{R T} M \sqrt{k R T} A=p \sqrt{\frac{k}{R T}} M A \\
\dot{m}=p \sqrt{\frac{k}{R T}} M A
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Choked Flow

Mass Flow Rate (ideal gas):

$$
\dot{m}=p \sqrt{\frac{k}{R T}} M A
$$

Recall, the stagnation pressure and Temperature ratio and substitute:

$$
\begin{gathered}
\frac{p_{o}}{p}=\left(\frac{k-1}{2} M^{2}+1\right)^{\frac{k}{k-1}} \quad \frac{T_{o}}{T}=\frac{k-1}{2} M^{2}+1 \\
\dot{m}=p_{o} \sqrt{\frac{k}{R T_{o}}} M A\left(1+\frac{k-1}{2} M^{2}\right)^{\frac{k+1}{2(1-k)}}
\end{gathered}
$$

\qquad
\qquad
\qquad

If the critical area $\left(\mathrm{A}^{*}\right)$ is where $\mathrm{M}=1$:

$$
\dot{m}=p_{o} A^{*} \sqrt{\frac{k}{R T_{o}}}\left(\frac{k+1}{2}\right)^{\frac{k+1}{2(1-k)}}
$$

The critical area Ratio is:

$$
\frac{A}{A^{*}}=\frac{1}{M}\left(\frac{2+(k-1) M^{2}}{k+1}\right)^{\frac{k+1}{2(k-1)}}
$$

