

Compressible Flow

3. Significant changes in velocity and pressure result in density variations throughout a flow field

4. Large Temperature variations result in density variations.

As a result we now have two new variables we must solve for: $T \& \rho$ We need 2 new equations. We will solve: mass, linear momentum, energy and an equation of state.

Important Effects of Compressibility on Flow

- *1. Choked Flow* a flow rate in a duct is limited by the sonic condition
- 2. Sound Wave/Pressure Waves rise and fall of pressure during the passage of an acoustic/sound wave. The magnitude of the pressure change is very small.
- 3. Shock Waves nearly discontinuous property changes in supersonic flow. (Explosions, high speed flight, gun firing, nuclear explosion)
- 4. A pressure ratio of 2:1 will cause sonic flow

Applications

- 1. Nozzles and Diffusers and converging diverging nozzles
- 2. Turbines, fans & pumps
- 3. Throttles flow regulators, an obstruction in a duct that controls pressure drop.
- 4. One Dimensional Isentropic Flow compressible pipe flow.

Approach

- Control volume approach
- Steady, One-dimension, Uniform Flow
- Additional Thermodynamics Concepts are needed
- Restrict our analysis to ideal gases

Thermodynamics – Internal Energy & Enthalpy

• Internal Energy – individual particle kinetic energy. Summation of molecular vibrational and rotational energy. $\tilde{u} = \tilde{u}(v,T)$

$$d\widetilde{u} = \left(\frac{\partial \widetilde{u}}{\partial T}\right)_{v} dT + \left(\frac{\partial \widetilde{u}}{\partial v}\right)_{T} dv$$

• For an ideal gas $\tilde{u} = \tilde{u}(T)$

 $d\tilde{u} = c_v dT$

• Recall from our integral form of the Energy Equation for <u>Enthalpy</u> of an ideal gas: $h = \tilde{u} + pv$ h = h(T) $dh = c_p dT$

Thermodynamics – Internal Energy &
Enthalpy

$$h = \tilde{u} + pv$$

$$h = \tilde{u} + RT \longrightarrow \frac{p}{\rho} = RT$$

$$dh = d\tilde{u} + RdT$$
Substituting:

$$dh = c_{p}dT \quad d\tilde{u} = c_{v}dT$$

$$dh = d\tilde{u} + RdT$$

$$c_{p}dT = c_{v}dT + RdT$$

$$c_{p} = c_{v} + R$$

$$c_{p} - c_{v} = R = const$$

The 2nd Law of Thermodynamics & Isentropic
Processes

$$s_2 - s_1 = c_p \ln \frac{T_2}{T_1} - R \ln \frac{p_2}{p_1}$$
For an Isentropic process: adiabatic and reversible
We get the following power law relationship

$$\frac{p_2}{p_1} = \left(\frac{T_2}{T_1}\right)^{\frac{k}{k-1}} = \left(\frac{\rho_2}{\rho_1}\right)^k \quad \bigwedge$$

Example 2: a needle nose projectile traveling at a speed of M=3 passes 200m above an observer. Find the projectiles velocity and determine how far beyond the observer the projectile will first be heard

$$c = \sqrt{kRT} = \sqrt{1.4(287)(300)} = 347.2 \text{m/s}$$

$$V = Mc = 3(347.2) = 1041.6 \text{m/s}$$

$$\alpha = \sin^{-1}\left(\frac{1}{M}\right) = \sin^{-1}\left(\frac{1}{3}\right) = 19.5^{\circ}$$

$$\tan \alpha = \frac{200m}{x}$$

$$x = \frac{200m}{\tan 19.5} = 565m$$

Steady Isentropic Flow – Control Volume Analysis

Applications where the assumptions of steady, uniform, isentropic flow are reasonable:

- 1. Exhaust gasses passing through the blades of a turbine.
- 2. Diffuser near the front of a jet engine
- 3. Nozzles on a rocket engine
- 4. A broken natural gas line

Stagnation Conditions - maximum velocity

$$T_{o} = \frac{V^{2}}{2c_{p}} + T \qquad (+)$$

If the temperature, T is taken taken down to absolute zero, then (+) can be solved for the maximum velocity:

$$V_{\text{max}} = \sqrt{2c_p T_o}$$

No higher velocity is possible unless energy is added to the flow through heat transfer or shaft work.

Critical Values: conditions when
$$M = 1$$

For Air $k = 1.4$

$$\frac{T^*}{T_o} = \left(\frac{2}{k+1}\right) = 0.8333$$

$$\frac{p^*}{p_o} = \left(\frac{2}{k+1}\right)^{\frac{k}{k-1}} = 0.5283$$

$$\frac{p^*}{p_o} = \left(\frac{2}{k+1}\right)^{\frac{1}{k-1}} = 0.9129$$

$$\frac{c^*}{c_o} = \left(\frac{2}{k+1}\right)^{\frac{1}{2}} = 0.9129$$
In all isentropic flow, all critical values are constant.

Critical Values: conditions when M = 1Critical Velocity: is the speed of sound c^* $\frac{c^*}{c_o} = \left(\frac{2}{k+1}\right)^{\frac{1}{2}}$ $V^* = c^* = \sqrt{kRT^*} = c_o \left(\frac{2}{k+1}\right)^{\frac{1}{2}} = \left(\frac{2kRT_o}{k+1}\right)^{\frac{1}{2}}$

Example 3: Stagnation Conditions

Air flows adiabatically through a duct. At point *I* the velocity is 240 m/s, with T₁ = 320K and p₁ = 170kPa. Compute
(a) T_o
(b) P_o
(c) r_o
(d) M
(e) V_{max}
(f) V*

Nozzle Flow Characteristics $\frac{dA}{A} = \frac{dp}{\rho V^2} (1 - M^2)$		
1.	Subsonic Flow: $M < 1$ and $dA < 0$, then $dP < 0$: indicating a decrease in pressure in a converging channel.	P P
2.	Supersonic Flow: $M > 1$ and $dA < 0$, then $dP > 0$: indicating an increase in pressure in a converging channel.	P
3.	Subsonic Flow: $M < 1$ and $dA > 0$, then $dP > 0$: indicating an increase in pressure in a diverging channel.	РР
4.	Supersonic Flow: $M > 1$ $dA > 0$, then $dP < 0$: indicating a decrease in pressure in a diverging channel.	Р Р

