Given: Velocity profiles listed below.

Find: Which are possible three-dimensional, incompressible cases?

Solution: Apply the continuity equation in differential form.

Basic equation: $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$

Assumption: Incompressible flow

Field	Terms	Sum	Possible
(a) u = x + y + 3 =	$\frac{\partial u}{\partial x} = i$		
v = x - y + 3	₹ = -1	0	Yes
$\omega = 2xy + y^2 + 4$	and = 0		
(b) u = xyzt	$\frac{\partial u}{\partial x} = yzt$		
V = -xy3t2	25 = -23t	0	Yes
$\omega = \frac{3}{2}(\chi t^2 - \gamma t)$	$\frac{\partial u}{\partial z} = xzt^2$	$\frac{\partial u}{\partial z} = xzt^2 - yzt$	
(c) $u = y^2 + \epsilon x z$	$\frac{\partial u}{\partial x} = 23$	$\frac{\partial u}{\partial x} = 23$	
v = - 243 + x243	$\frac{\partial v}{\partial y} = -23$	+ x 3 ≠0	No
$\omega = \frac{\chi^2 3}{2} + \chi^3 y^4$	$\frac{\partial w}{\partial z} = x^2 z$		