Problem 5.42

Given: Incompressible, two-dimensional flow field with \(\nu = 0 \), has a \(y \)-component of velocity given by

\[v = -Ay \]

where units of \(u \) are m/s; \(x \) and \(y \) are in meters and \(A \) is a dimensional constant.

Find: (a) the dimensions of the constant \(A \)
(b) the simplest \(x \)-component of velocity for this flow field.
(c) the acceleration of a fluid particle at the point \((x, y) = (1, 2)\)

Solution:

(a) Since \(v = -Ay \), then the dimensions of \(A \), \([A]\), are given by

\[[A] = \left[\frac{L}{T L L} \right] = \frac{1}{T} \]

(b) Apply the continuity equation for the conditions given.

Basic equation:

\[\frac{\partial u}{\partial t} + \frac{\partial (u^2)}{\partial x} + \frac{\partial (uv)}{\partial y} = 0 \]

For incompressible flow, \(\frac{\partial \rho}{\partial t} = 0 \). Thus with \(\nu = 0 \), the basic equation reduces to

\[\frac{\partial u}{\partial t} + \frac{\partial (u^2)}{\partial x} + \frac{\partial (uv)}{\partial y} = 0 \]

Then,

\[\frac{\partial u}{\partial t} = -\frac{\partial}{\partial x} (-Ay) = Ay \]

and

\[u(x, t) = \int_{-\infty}^{x} Ay \, dx = \frac{1}{2} A x^2 + f(y) \]

The simplest \(x \)-component of velocity is obtained with \(f(y) = 0 \)

\[u(x, t) = \frac{1}{2} A x^2 \]

(c) The acceleration of a fluid particle is given by

\[\mathbf{a}_p = \frac{\partial \mathbf{v}}{\partial t} = u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} \]

\[\mathbf{a}_p = \frac{1}{2} A x^2 \left[\frac{1}{2} A x^2 - Ay \right] - Ax^2 \frac{\partial y}{\partial x} \left[\frac{1}{2} A x^2 - Ay \right] \]

At the point \((x, y) = (1, 2)\)

\[\mathbf{a}_p = \frac{1}{2} A^2 \left(1 \right)^2 \frac{1}{2} A^2 \left(2 \right)^2 \]

\[\mathbf{a}_p = \frac{1}{2} A^2 \left[\frac{1}{2} \right] = \frac{1}{2} A^2 \]

\[\mathbf{a}_p = \mathbf{a} \]