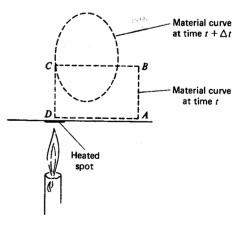

Examples from Fluid Mechanics Potter & Foss, 1982, Great Lakes Press, MI

inner bank near the bottom of the stream. (If your right thumb points in the direction of the vorticity your curled fingers will indicate the vortical motion.) This is the agent which transports stones to the inner bank. The ξ -vorticity component also causes the surface flow to move toward the outer bank after causing errosion near the stream surface. (This outward flow may be observed by dropping a leaf on the water surface upstream of the bend.)

Example 5.1

Use the vorticity transport equation (5.14) and explain the presence of the secondary flow downstream of a bend in a river or creek. Can the typical eroded outer bank and the deposition of stones on the inner bank be explained by such a secondary flow? The velocity profile prior to the bend is as shown in Fig. E5.1. It is known that the flow speeds up on the inside of the bend, as shown at section (2).

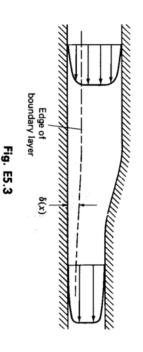

Solution. The vorticity at the start of the bend is in the y-direction near the bottom $(\omega = \eta \hat{f})$ and in the z-direction on the inner side wall $(\omega = \zeta k)$, assuming the river to form a rectangular cross-section. The flow on the inside of the bend accelerates (a fact which will be discussed in Chapter 8) resulting, at section (2), in a non-zero $\partial u/\partial y$ for the bottom flow and a non-zero $\partial u/\partial z$ for the side wall flow. Note that $\partial u/\partial y = 0$ near the bottom and $\partial u/\partial z = 0$ on the sidewall at section (1). The x-component vorticity equation (see Eq. 5.14) is

$$\frac{D\xi}{Dt} = \xi \frac{\partial u}{\partial x} + \eta \frac{\partial u}{\partial y} + \zeta \frac{\partial u}{\partial z} + \nu \nabla^2 \xi$$

Thus we see that $\eta \partial u/\partial y$ from the bottom flow results in a positive $D\xi/Dt$ and hence a positive ξ at section (2). Likewise, $\xi \partial u/\partial z$ from the sidewall results in a positive ξ . The sense of ξ is to cause a net flow from the outer bank to the

Example 5.2

The second circulation-producing term in Eq. 5.21, $-\oint_C (dp/\rho)$, is nonzero if the density is a variable and is not related uniquely to the pressure, that is, if there is a nonbarotropic relationship between ρ and p. [It will be left as an


exercise for the student to show that $\oint (dp/\rho) = 0$ for a barotropic flow, i.e.

circulation is produced. bulb, or a fire. Such a situation is demonstrated in Fig. E5.2. Explain how the localized heating of a fluid such as would occur above a stove burner, a light isothermal flows.] A nonbarotropic circulation-producing condition is the $\rho = \rho(p)$. Note that $\rho = \text{constant satisfies this condition}$, as do isentropic and

 $\partial p/\partial z > \rho g$ along CD) there will be a net contribution to $D\Gamma/Dt$ from this decrease in the region where the fluid has been heated; hence the hydrostaticthe term. Consequently, a circulation around the material curve will be developed from C to D is nonbarotropic (the upward flow from D to C implies that fluid of the material curve will be carried upward. Since the pressure variation to A $(p_D < p_A)$ and hence a flow from A to D and from D to C. Hence, the to the level of the spot. As a result of this, there is a pressure gradient from Dpressure variation, from some distance above the heated spot down to it, localized heating effect. The density of the fluid above the heated spot will as the fluid of the curve rises. would be less than the hydrostatic-pressure change from the same initial height Solution. figure), will experience a change A closed contour of fluid particles (a material curve as shown on in its circulation as a result of the

Example 5.3 -

at the inlet (see Fig. E5.3); explain this observation. observed that the boundary layer at the exit of the contraction is smaller than A relatively large boundary layer exists at the inlet to a contraction. It is

outward diffusion from below. For this example the boundary layer decreases component directed toward the lower surface; consequently, the edge of the vorticity is negligible. For the accelerating flow, the free-stream velocity has a the boundary layer is taken as the location where the outward diffusion of viscous diffusion in the contracting region. in thickness with the x-location since the convective transport exceeds the bringing non-vortical fluid into a spatial region from above is balanced by the boundary layer will be located at the y-location where the convective transport Solution. Consider a region in space as shown on the sketch. The edge of

	2	1	
	(l	
	Ľ		
	2	I	1
	F		
	h	1	
	Ń		
1	Ĺ		
			1
9		Ľ	
ľ	1		
ļ			
1			
States and a			
A PARTY AND A PARTY OF			
A PARTY PARTY PARTY PARTY			
A PARTY AND A PART			
A STATE AND A STAT			
A PARTY AND A PART			
A CARL PROPERTY OF A CARL			
A COMPANY AND A COMPANY			
A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O			

Exercise 5.1

Angular velocity w = 40 rad/s

Ъ 11 $\omega^2 r^2/2g$

3

52

$$h_{1} = \omega^{2} r_{1}^{2} / 2g = (40)^{2} r_{1}^{2} / 2(9.81) = 81.5 r_{1}^{2}$$

$$h_{2} = 4 + h_{1} = \omega^{2} r_{2}^{2} / 2g = 81.5 r_{2}^{2}$$

Subtracting (2) 1 (1), we get

N

(2)

(1)

$$4 = 81.5(r_2^2 - r_1^2) \longrightarrow r_2^2 - r_1^2 = 0.0491 \text{ m}^2 \quad (3)$$

Now volume of air within the tank does not change, so

where we the above have used becomes (1) and (2) to replace h and h₂ . Using (3),

-

N

_'

$$r_2^2 + r_1^2 = 2/(81.5)(r_2^2 - r_1^2) = 2/(81.5)(0.0491) = 0.5$$
 (4)

we get LE. 11 0.0 0.0491 = 0.45.Thus

5

11

1.18 kg/m³

at

25° C

-0 NO

E

N

8

-7

N

11

T

qu

11

ł

500 N/m²

-7

11

4

2000 N/m²

so

that

Area uncovered = πr_i

N

11

0.71

m2

30

u o

_

11

0.475

8

Exercise 5.2

$$\frac{1}{2}$$

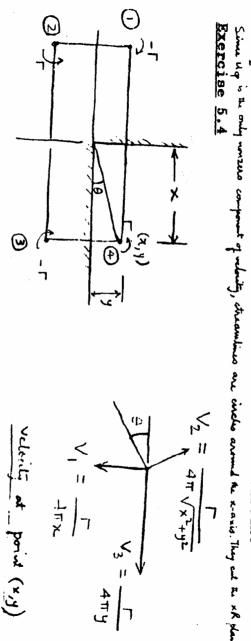
(a) Applying Pernoulli equation between infinity and edge of
core, we get

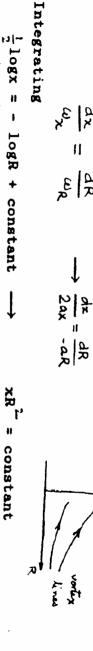
$$u_{i} = \sqrt{2(p_{\infty} - p_{i})/\rho} = \sqrt{2(2000)/1.18} = 58.2 \text{ m/s}$$
(b) Apply Bernoulli equation between points 2 and 1:

$$p_{i} + \frac{i}{2}\rho u_{i}^{2} = p_{i} + \frac{i}{2}\rho u_{i}^{2}$$

$$p_{i} = \sqrt{2(p_{i} - p_{i})/\rho + u_{i}^{2}} = \sqrt{2(-2000 + 500)/1.18} + 58.2^{2}$$
Since circulation outside core is constant, $r_{i} U_{i} = r_{i} U_{2}^{2}$.
Since circulation outside core is constant, $r_{i} U_{i} = r_{i} U_{2}^{2}$.
Since circulation outside core is constant, $r_{i} U_{i} = r_{i} U_{2}^{2}$.
Since circulation outside $(r_{i} - r_{i})/V = (30 - 15)/25 = 0.6 \text{ s}$
Exercise 5.3
Given
 $u_{\mu} = \frac{1}{R_{\mu}}\frac{\partial q}{\partial q} - \frac{\partial u_{\mu}}{\partial x} = 0$
 $u_{\mu} = \frac{1}{R_{\mu}}\frac{\partial q}{\partial q} - \frac{\partial u_{\mu}}{\partial x} = 0$
(a) From Appendix B the vorticity components are
 $\omega_{\mu} = \frac{1}{R_{\mu}}\frac{\partial q}{\partial q} - \frac{\partial u_{\mu}}{\partial x} = 0$
 $u_{\mu} = \frac{1}{R_{\mu}}\frac{\partial q}{\partial q} - \frac{\partial u_{\mu}}{\partial x} = 0$
 $(u_{\mu} = \frac{1}{R_{\mu}}\frac{\partial}{\partial q} (n_{\mu}) - \frac{1}{R_{\mu}}\frac{\partial u_{\mu}}{\partial q} = \frac{1}{R_{\mu}}\frac{\partial}{\partial p} (nR^{2}x) = 2nx$
(b)
 $\int_{\omega} \omega_{\mu} = \frac{1}{R_{\mu}}\frac{\partial}{\partial r} (n_{\mu}^{2}) - \frac{1}{R_{\mu}}\frac{\partial u_{\mu}}{\partial q} + \frac{\partial u_{\mu}}{\partial x}$

Therefore


dy/dt = v(t)


$$dx/dt = u(t)$$

Path lines are given by

$$u = \sum V_{x} = V_{y} - V_{z} \sin \theta = \frac{\Gamma}{4\pi y} - \frac{\Gamma}{4\pi \sqrt{x^{2} + y^{2}}} = \frac{\Gamma}{4\pi \sqrt$$

The three image vortices are components of the net velocity at point (x,y) due to the

= xBol 'n^RX constant

circles around the x-axis. They end the xh plane at po

 $\frac{\partial}{\partial R}(-aR^2) + 0 + \frac{\partial}{\partial X}(2ax) = -$ 2a + 2a = 0 x

م

(c) Vortex lines are given by

X

AR

ſ

H 70 |-

17

$$\frac{dx}{dt} = \frac{\Gamma}{4\pi} \left[\frac{x^2}{y(x^2 + y^2)} \right]$$

$$\frac{dy}{dt} = -\frac{\Gamma}{4\pi} \left[\frac{y^2}{x(x^2+y^2)} \right]$$

Dividing we get

$$dy/dx = -y^3/x^3 \longrightarrow dy/y^3 = -dx/x^3$$

Integration gives

$$1/x^{2} + 1/y^{2} = F(t)$$

constant. Initial initial condition gives coordinates of $1/x_{o}^{2}$ the + vortex. 1/y°2 u F(t), where Thus F(t)(x₃,y_o has) are ő be the β

Exercise 5.5

Equation of motion in rotating coordinates s,

$$\frac{D\tilde{u}}{Dt} = -\frac{1}{\rho}\tilde{v}\rho + \tilde{g} - 2\tilde{u}x \tilde{u}$$

In conservative Under Section 5.4, barotropic body forces, and inviscid Ee took the we showed that dot conditions, product and of each in the presence term with .хŗ of

The product with element $d\tilde{x}$ parallel to a circuit C, extra term here si ł the Coriolis force. we Taking get its dot

$$-(2 \hat{\mu} \mathbf{x} \hat{\mathbf{u}}) \cdot d\mathbf{\tilde{x}} = -2(\hat{\mu} \mathbf{x} \hat{\mathbf{u}})_{i} d\mathbf{x}_{i} = -2 \mathcal{E}_{ijk} \mathbf{n}_{j} \mathbf{u}_{k} d\mathbf{x}_{i} = -2 \hat{n}_{j} \mathcal{E}_{ijk} \mathbf{u}_{k} d\mathbf{x}_{i}$$

$$-(2\mathcal{L}_{X} \mathbf{u}) \cdot d\mathbf{x} = -2(\mathcal{L}_{X} \mathbf{x} \mathbf{u}) \cdot d\mathbf{x}_{i} = -2\varepsilon_{ijk} \mathbf{n}_{j} \mathbf{u}_{k} d\mathbf{x}_{i} = -2\mathcal{D}_{j}\varepsilon_{ijk} \mathbf{u}_{k} d\mathbf{x}_{i}$$

$$-(2\tilde{\mu}x \tilde{u})\cdot d\tilde{x} = -2(\tilde{\mu}x \tilde{u})\cdot dx_{i} = -2\epsilon_{ijk}\Lambda_{j}u_{k}dx_{i} = -2\Lambda_{j}\epsilon_{ijk}u_{k}dx_{i}$$

$$= 2 \mathcal{L}_{j} \varepsilon_{j;k} \, \mathrm{dx}_{i} \mathrm{u}_{k} = 2 \mathcal{L}_{j} (\mathrm{dx} \times \widetilde{\mathrm{u}})_{j} = -2 \mathcal{L}_{i} (\widetilde{\mathrm{u}} \times \mathrm{dx})$$

$$= -2 \mathcal{L}_{i} \mathrm{u}_{k} \, \mathrm{dx} \qquad (1)$$

dx, and where <u>ک</u> ۲ ۲ si the is the unit vector perpendicular component of <u>u</u> perpendicular ť the to dx. plane of In)= and an