Steam Turbine Exhaust Monitoring

Nestor Camacho, Todd Kingston, Devin Laskowski, Anthony Marcello, Randall Rosenlof, Austin Zobell
Faculty Advisor: Dr. Tim Ameel

Background

Due to increases in the use of renewable energy, such as solar and wind, traditional power plants are running into new challenges. We are working with PacifiCorp to overcome challenges they are facing with one of their steam turbines. The power output of wind and solar is variable, as it depends on factors like wind speed or light intensity. With varying power coming from renewable energy sources, the steam turbine must also vary its power output to meet grid demand. Traditional steam turbines from the 1950s, like the one investigated in this project, are meant to modulate output power near 100% capacity. However, when power output from renewables is highest, the turbine must ramp down to around 20% capacity.

Operating at the low extreme of the steam turbine’s capacity is causing undesirable flow conditions, particularly near the last set of the turbine blades. It’s been observed that ramping down capacity causes steam flow to reverse and travel back into the turbine blades. This causes vibrations in the turbine blades that lead to costly fractures and wear and tear.

Project Scope

- Create a sensor array to monitor the flow conditions at the turbine outlet
- Primary concern is reverse flow, device must measure flow velocity in multiple directions
- Ability to determine when undesirable flow arises in real-time, which will allow operators to quickly change turbine operation to prevent damage

Results

Due to increases in the use of renewable energy, such as solar and wind, traditional power plants are running into new challenges. We are working with PacifiCorp to overcome challenges they are facing with one of their steam turbines. The power output of wind and solar is variable, as it depends on factors like wind speed or light intensity. With varying power coming from renewable energy sources, the steam turbine must also vary its power output to meet grid demand. Traditional steam turbines from the 1950s, like the one investigated in this project, are meant to modulate output power near 100% capacity. However, when power output from renewables is highest, the turbine must ramp down to around 20% capacity.

Operating at the low extreme of the steam turbine’s capacity is causing undesirable flow conditions, particularly near the last set of the turbine blades. It’s been observed that ramping down capacity causes steam flow to reverse and travel back into the turbine blades. This causes vibrations in the turbine blades that lead to costly fractures and wear and tear.

Design

- 8 pitot tubes arranged 45 degrees apart from each other
- Velocity can be measured in several directions simultaneously
- The center tube can rotate in the X-Y plane
- The center tube may be extended and retracted in the Z direction

Test Methods

- 5 readings per second, measurements taken for 10 seconds
- Measurement readings relatively constant at steady state
- Measurement uncertainty increases in tubes facing away from flow
- Small speed increase in pitot tube 5 relative to adjacent pitot tubes
- Device can theoretically measure backflow

Objective Metric Design Solution

<table>
<thead>
<tr>
<th>Objective</th>
<th>Metric</th>
<th>Design Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement Requirement</td>
<td>Accurately characterize flow direction</td>
<td>Omnidirectional Pitot Tube Probe</td>
</tr>
<tr>
<td>Size Constraint</td>
<td>Fit within turbine opening (&lt;3 ft in dia.)</td>
<td>Probe diameter of 1 ft</td>
</tr>
<tr>
<td>Temperature Constraints</td>
<td>Withstand temps. up to 200°F</td>
<td>Theoretically operational up to 150°F</td>
</tr>
<tr>
<td>Project Cost</td>
<td>Under $5,000</td>
<td>Total cost: $1,278.56</td>
</tr>
</tbody>
</table>

Conclusion

Due to project logistics, we are not able to create a final design that could be installed in the steam turbine. Our prototypes and testing have served as a proof of concept. To complete the project, we will:

- Finalize prototype testing
- Complete a final design with a more durable material that could be installed in Pacificorp’s turbine