

Department of Mechanical Engineering

Introduction

The Blast Cart for Hill Air Force Base has been designed to hold a variety of aircraft parts for scheduled maintenance

Design Goals

- Wheel covers
- Telescoping legs for height adjustment
- FEA analysis for structural integrity and fatigue life calculations

Design Problems

- Support the required loads
- Prevent wheel bind-up from debris
- Adjustable to multiple working parts
- Being iterated to include automated movement?

Part Parameters

- Max. part weight: 700 lbs.
- 90% of weight on one end
- Cylindrical with max. diameter of 24 inches

Deliverables

- .SLDPRT files
- Drawings
- Final covers printed from PLA
- Final cart

Design Metrics

Metric	Unit	Value	
Wheel exposure to debris is minimized	N/A	Yes/no	
Debris on the cart can be easily cleaned off	N/A	Yes/no	
Can hold a range of diameters	in	8 <x<24< td=""></x<24<>	
Can hold entire load at one end	lbf	700	
Load bearing capability	lbs n • 700		
Parts are resistant to sand blasting	N/A	Yes/no	
Length of cart	ft	4 <x<6< td=""></x<6<>	
Width of cart	ft	2 <x<4< td=""></x<4<>	
Height of cart	ft	2 <x<4< td=""></x<4<>	
Easy to maintain	N/A	Yes/no	

FEA Conditions

- wheels
- for pins)

FEA Methods

- Started with large mesh to determine areas of high stress
- Refined mesh in high-stress areas to achieve accurate results
- Iterated the cart design until factor of safety of 4 was met

Legend:

A: Static Structural
Equivalent Stress
Type: Equivalent (vo
Unit: psi
Time: 1 s
4/10/2024 3:53 PM
👝 13167 Max
10500
9187.5
- 7875
6562.5

5250

3937.5

1312.5

0.004103 Min

2625

Blast Cart-Hill AFB

Group Members: Charles Balle, Milo Birdwell, Mathis Bosteels, John Brand, Van Erickson, Zachary Mecham Advisor: Andrew Gill

Weight of 1000 lbs. for extreme use case Maximum part diameter of 24 inches Center of mass applied over one set of

Yield Strength of Steel: 42,000 psi (53,700

Pin:

Significant FEA Results

orgrinicant i LA Nesuits							
Part	Max Stress (psi)	Factor of Safety	Max Principal Elastic Strain (με)	Min Principal Elastic Strain (με)	Infinite Life		
Leg Gusset	5,662	7.42	80	-110	Yes		
Arm	10,232	4.11	120	-350	Yes		
U-Bolt	7,828	5.37	285	-200	Yes		
Pin	11,082	4.85	275	-295	Yes		

Methods Used in Design

- Finite Element Analysis (FEA) Ansys
- Fatigue Life Calculations
- CAD modeling
- SolidWorks
- 3D Printing

Manufacturing Processes

Main structure was cut, machined and welded professionally in conjunction with Bonneville Machine.

Wheel Cover Methods

Wheel covers were designed in SolidWorks to fit 8-inch diameter wheels from McMaster. Two main cover designs to minimize exposure:

- Fixed wheels
- Swivel wheels

Wheel Cover Testing

- Wheel covers are printed using FDM process
- A test apparatus was built to simulate a sandblasting environment
- Multiple exposures to sand were performed before inspecting the inside of the covers and testing the wheels for performance under load

Conclusion

Based on our FEA results, our blast cart design achieves an infinite life while maintaining a factor of safety of at least 4 in all areas that were tested.

Wheel covers proved to minimize the wheels exposure to sand.

Future Development

Automated movement through mounted servos, motors, or hydraulics. Progress towards full part articulation (rotation about each axis)

