Environmental Fluid Dynamics Research and Education in the University of Utah’s Department of Mechanical Engineering is studying the properties of the Earth’s atmosphere and its relation to the science of fluid dynamics, including large scale simulations and field experiments. Core strengths include dynamics, mechanics, pollutant dispersion, computational analysis, large scale simulations, and atmospheric boundary layers.

Faculty and Labs

Marc Calaf
Lab – Wind Energy & Turbulence

The Wind Energy and Turbulence laboratory was designed to improve the current understanding of wind energy harvesting. To achieve this goal we dedicate much of our efforts to develop new knowledge on the turbulent atmospheric boundary layer. Our focus resides on using high resolution numerical simulations which we ultimately complement with the analysis of experimental data.

Learn more

Todd Harman

Research interests include: Computational Fluid Dynamics and Fluid Structure Interaction, Supersonic flows, and Large scale simulations.

Learn more

Pania Newell
Lab – Integrated Multi-Physics Laboratory

Investigating multi-physics, multi-scale phenomena through integrating theoretical, experimental, computational analysis combined with data sciences.

Learn more

M Metzger

Research Interests inclue: Experimental fluid dynamics with an emphasis on pollutant dispersion, turbulent mixing, and high Reynolds number turbulent boundary layer physics. Development of experimental techniques and sensors for fundamental fluid dynamic and atmospheric measurements.

Learn more

Eric Pardyjak

The work done at the Environmental Fluid Dynamics Laboratory at the University of Utah attempts to further the understanding of transport phoenomena in the natural world. To this end, the laboratory employs a variety of state of the art scientific investigation techniques including: large scale field measurements (both Urban and Natural Environment), numerical modeling and simulation, and laboratory scale measurements.

Learn more

Rob Stoll

Research Interests include: Fluid mechanics in the environment, Computational fluid dynamics, Large-eddy simulation, Atmospheric boundary layer, and Land-atmosphere interactions.

Learn more